
ETH Library

Specification-based Firewall
Testing

Doctoral Thesis

Author(s):
Bidder, Diana von

Publication date:
2007

Permanent link:
https://doi.org/https://doi.org/10.3929/ethz-a-005415790

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/https://doi.org/10.3929/ethz-a-005415790
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

DISS. ETH NO. 17172

Specification-based Firewall Testing

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

DIANA VON BIDDER-SENN

Dipl. Informatik-Ing. ETH

born 14.11.1978

citizen of Zürich, Obersiggenthal AG, Basel, Genève

accepted on the recommendation of

Prof. D. Basin, Ph.D, examiner

Dr. G. Caronni, co-examiner

Prof. Dr. B. Plattner, co-examiner

2007

To my late grandfather

Werner Senn

Acknowledgements

First of all I want to thank all the people that nurtured my interest in mathematics: my
late grandfather, my parents, Mrs. Fritschi, and Mr. Gamper. Without them I wouldn’t
be where I am. That I am still here and now finishing my dissertation is due to Germano
and Paul S. — thank you for your support in hard times.

Then I would like to thank armasuisse for the interesting and challenging project I
could work on, and also for the freedom they gave me. And I want to thank David and
Germano for their supervision. Further, I want to thank all the students that helped me
building a prototype tool to validate my approach: Gerry Zaugg, Markus Frauenfelder,
Stefan Hildenbrand, Beat Strasser, Adrian Schüpbach, Lukas Brügger, and Gabriel Müller.

I want to thank all the people proofreading (parts of) my thesis: Paul Sevinç, Adrian
von Bidder, Boris Köpf, Felix Klaedtke, Cas Cremers, Ivo Blöchliger, and Alexander
Pretschner. And I want to thank my office-mate Jürgen Doser for all his help on mathe-
matics and writing better understandable texts.

I quite liked being the only female researcher in our group. For this I want to thank
all “my men” for all the interesting discussions during lunch or at the BQM. I also thank
them for prodding me to bake more and better cakes.

And last but not least, I want to thank Adrian for his love, for listening to my problems
and for staying longer in Zurich than he intended.

i

ii

Contents

1 Introduction 1

1.1 State of the Art . 2

1.2 Goal . 3

1.3 Possible Approaches . 3

1.4 Overview of our Approach . 5

1.5 Contributions . 6

1.6 Organisation of this Thesis . 7

2 Background 9

2.1 Mealy Machines . 9

2.2 Network Protocols . 10

2.3 Security Policy . 12

2.4 Firewalls . 13

2.5 Testing in General . 16

2.6 Test Case Generation . 17

Part I Specification-based Firewall Testing

3 Specification 27

3.1 Network Layout . 27

3.2 Formal Policy . 30

3.3 Summary . 33

4 Test Methodology 35

4.1 Test Objectives . 35

4.2 The System under Test . 36

4.3 Test Case Generation . 37

4.4 Practical Considerations . 43

4.5 Summary . 43

iii

5 Validation 45

5.1 Tools . 45

5.2 An Example Test Run . 48

5.3 Armasuisse Case Study . 56

6 Related Work 61

6.1 Security Policy . 61

6.2 Firewalls . 61

7 Summary 65

7.1 Conclusion . 65

7.2 Future Work . 65

Part II Endpoints versus Midpoints

8 Motivation 69

8.1 The Source of the Problem . 70

8.2 Case Study . 72

9 Construction 77

9.1 Setting . 77

9.2 Idea . 78

9.3 Construction . 80

9.4 Correctness . 87

10 Summary 91

10.1 Discussion . 91

10.2 Conclusion . 93

10.3 Future Work . 93

Part III Conclusion

11 Conclusion and Future Work 97

11.1 Conclusion . 97

11.2 Future Work . 99

iv

Part IV Appendix

A Validation – Test Tuples 103

B Haskell Code for End to Mid 124

C Abstract Test Cases for TCP 129

D A small iptables HOWTO 147

v

List of Figures

1.1 Policy versus rules . 4
1.2 Overview . 5

2.1 A graphical Mealy machine . 10
2.2 TCP three-way-handshake . 11
2.3 An example of an iptables ruleset (stateful) 14
2.4 An example of an ipchains ruleset (stateless) 15
2.5 Test Tree for tcp . 19

3.1 A typical network layout . 28
3.2 Grammar for textual network layout . 29
3.3 A sample textual network layout . 29
3.4 Grammar for network policies . 32
3.5 A sample formal network policy . 32
3.6 Grammar for keyword definitions . 32
3.7 Sample keyword definitions . 32

4.1 System under test . 36
4.2 Test ingredients . 38
4.3 Policy for https with test points . 39

5.1 Our tools – the big picture . 46
5.2 fwtest v0.5 . 47
5.3 fwtest v1.0 . 47
5.4 Demo – formal policy . 48
5.5 Demo – network layout . 48
5.6 Keyword definitions . 48
5.7 Network setup . 49
5.8 Firewall rules . 50
5.9 TCGTool – The form of a TCP packet . 51
5.10 TCGTool – The different TCP packets . 52
5.11 TCGTool – TCP automaton in Checkpoint R55W 52
5.12 Firewall rules – improved version . 55

8.1 TCP scenario 1 . 70

vi

8.2 TCP scenario 2 . 70
8.3 TCP specification for a midpoint . 72
8.4 TCP automaton in iptables (ip conntrack 2.1) 73
8.5 TCP automaton in Checkpoint R55W . 73
8.6 TCP automaton in ISA Server v4.0.2161.50 74

9.1 A message forwarded by the midpoint . 78
9.2 A message dropped by the midpoint . 78
9.3 A message lost by the network . 78
9.4 Two consecutive endpoint transitions . 80
9.5 A transition in an endpoint, from a midpoint’s view 84

10.1 Midpoint automaton for TCP . 92

vii

viii

Zusammenfassung

Firewalls sind heutzutage omnipräsent. Jedermann kennt das Wort, doch die Funktions-
weise einer Firewall bleibt vielen verborgen. Viele sehen in Firewalls einen umfassenden
Schutz, den diese aber leider nicht bieten können. So stehen zwar vielerorts Firewalls, die
irgendwie konfiguriert sind, aber es kümmert sich niemand darum, ob diese auch tun was
man von ihnen erwartet.

Der springende Punkt hier sind die Erwartungen, die man an eine Firewall stellt. Diese
sind für verschiedene Benutzer und Umgebungen unterschiedlich: Eine Firewall in einer
Bank muss einen anderen Zweck erfüllen als eine Firewall an einer Universität. Und auch
innerhalb einer Bank gibt es mehrere Firewalls die unterschiedliche Zwecke erfüllen.

Um zu überprüfen, ob eine Firewall die an sie gestellten Erwartungen erfüllt, müssen
die Erwartungen klar sein, zum Beispiel durch schriftliches Notieren in einer sogenannten
security policy. Leider gibt es aktuell zwei Probleme, die dies verhindern: 1) security
policies existieren oft nicht oder sind sehr informal gehalten. 2) es gibt keine Methoden
um so eine Überprüfung durchzuführen.

Das Ziel dieser Dissertation ist es die obengenannten Probleme zu beheben: Das
Ermöglichen eines automatisierten Firewall-Tests basierend auf einer formalen policy, soll
die Leute motivieren policies zu schreiben. In dieser Dissertation wird also eine Methode
zum spezifikationsbasierten Firewall-Testing entworfen.

Da wir die zu testenden Firewalls als Black-Boxes betrachten und auf Netzwerkebene
testen, werden sowohl Firewall-Konfiguration als auch Firewall-Implementation getestet.
Die Firewall-Konfiguration sagt aus welche Verbindungen erlaubt sind und wird vom
Firewall-Benutzer geschrieben. Die Firewall-Implementation sagt aus was zu einer Ver-
bindung gehört (Protokoll-Automaten) und wird vom Firewall-Hersteller geliefert. Un-
sere Methode gliedert sich in zwei Stufen, je eine für den Test von Konfiguration und
Implementation.

Im ersten Teil der Dissertation wird ein Überblick über die gesamte Testmethode gege-
ben, mit Schwerpunkt auf dem Test der Firewall-Konfiguration. Zum Testen der Firewall-
Konfiguration wird eine Sprache vorgestellt, die es ermöglicht security policies formal zu
spezifizieren. Eine solche policy ist der Startpunkt unserer Methode, die daraus Testfälle
generiert. Mit diesen Testfällen kann geprüft werden, ob eine gewisse Firewall die vorgege-
bene policy erfüllt. Da unsere Methode die zu testende Firewall als black-box betrachtet,
funktioniert unser Ansatz mit jeder Firewall. Dies haben wir mit einer Fallstudie validiert.

Der zweite Teil der Dissertation befasst sich dann mit dem Problem, wie eine Fire-
wall ein gewisses Protokoll behandeln soll. Dieses Wissen brauchen wir, um die Firewall-
Implementation testen zu können. Wir zeigen auf wieso und inwiefern Firewalls sich
von Endpunkten unterscheiden und was die Folge von fehlenden Protokollspezifikationen
für Firewalls ist. Basierend auf dieser Analyse, schlagen wir einen Algorithmus vor, der
Firewall-Protokollspezifikation aus Protokollspezifikationen für Endpunkte generiert. Wir

beweisen, dass eine Firewall, welche eine solche Spezifikation umsetzt, nur Pakete akzep-
tiert, die von protokoll-konformen Endpunkten stammen. Trotz der immensen Wichtigkeit
dieses Themas, auch für Firewall-Hersteller, stellt die vorliegende Arbeit unseres Wissens
nach die erste (systematische) Arbeit zu diesem Thema dar.

Die Kombination beider Teile dieser Dissertation ermöglicht also ein automatisiertes
Prüfen der Erfüllung einer security policy durch eine Firewall (bestehend aus Regeln und
Implementation). Damit haben wir das gesteckte Ziel erreicht, wie auch in der Fallstudie
gezeigt wird.

x

Abstract

Firewalls are a central component in network security. They are widely deployed, un-
fortunately without having good means for determining whether they are accomplishing
their job correctly.

To be able to determine if a firewall accomplishes its job correctly, we must know the
expectations the firewall under test has to fulfil. These expectations need to be specified
in a security policy, which is rarely done in practice at the moment.

The aim of this thesis is to develop a methodology for the specification-based firewall
testing. We develop a method for testing given firewalls for conformance to a security
policy. To achieve this goal, our method needs to be able to generate separate tests for
every environment, based on the security policy of the respective environment.

A firewall consists of two main parts: implementation and configuration. Implementa-
tion is what is done by the firewall vendor. Configuration is what is done by the owner of
the firewall. Simplified, the configuration states which connections are allowed, whereas
the implementation states (as protocol automata) how such connections look like. As we
do black-box testing at the network level, we have to both test the configuration and the
implementation of a firewall. We do this by a two-stage approach.

The first part of this thesis gives an overview of the whole testing process, but concen-
trates on testing the configuration of a firewall. For this we design a language to formally
specify network security policies. Further we propose a method for checking whether a
given firewall, which we treat as a black box, correctly enforces such a policy. Using
prototype tool support, we validate this approach.

The second part of this thesis then addresses the question of how a firewall, or more
generally a midpoint, should handle a protocol. This question is central to the testing of
a firewall’s implementation. To our knowledge the problem has not been identified before.
We show why midpoints are different from endpoints, illustrate the consequences of the
current lack of protocol specifications for midpoints, and give an algorithm to generate
midpoint specifications from endpoint specifications systematically. Roughly speaking, the
algorithm tracks all possible endpoint states at each point in time, taking into account
messages in transit and possible network behaviour. We prove that the midpoint automata
constructed forward only those messages that could have resulted from protocol-conform
endpoints.

By combining both parts of this thesis, it is possible to automatically check whether
the security one relies on is justified, i.e. if firewall specifications and implementations
conform to their specification.

xii

Chapter 1

Introduction

The Need for Firewalls
In today’s world, more and more companies (and individuals) want to benefit from the
Internet. But connecting a private network to the Internet endangers proprietary data
and the network itself. Security (protection) measures are needed to protect data from
unauthorised access. Firewalls are an integral part of such security measures.

A firewall can be compared to a door-lock or a gatekeeper. Both can prevent unau-
thorised access to a building. In fact, we need a door-lock or gatekeeper for every critical
door in the building. We explain this with the help of an example. Consider a bank
with 4 doors. The bank has a main door (door 1) leading to an anteroom containing an
ATM. From there, another door (door 2) leads to the counter area, which is separated by
another door (door 3) from the offices. Finally, we have a door (door 4) separating the
vault from the offices. In this example we see that the doors are placed between areas
with different functionality.

An access policy defines who is authorised to enter which room and when. This access
policy should be implemented by the door-locks, together with the corresponding keys
and cards. Note that doors alone are not sufficient – we for example also need walls –
but they are the policy enforcement points. In our example, the policy could be that
door 1 can be opened 24 hours by customers of the bank using their account card, door
2 should only be open during the opening hours of the bank, door 3 can only be opened
by employees of the bank and door 4 can only be opened by 2 or more members of the
board together.

The Need for Security Policies
Similar to the access policy in our above example, a security policy is needed in a networked
environment. A security policy specifies the jobs of the firewalls in a network as well as
the expected behaviour of users like “do not write down your password”. A security policy
is used:

• To establish consensus about the security measures in place,

• as a guideline for the (firewall) administrator, and

1

1.1. STATE OF THE ART CHAPTER 1. INTRODUCTION

• as foundation in testing.

Let us elaborate on the first item. There are mainly two reasons why consensus,
about the security measures in place, is important. The first reason is that we have
different people involved in the development of a security policy. We have a security
officer having the knowledge to propose reasonable security measures, the management
having to approve these, and a (firewall) administrator having to implement them. If they
do not talk about the same thing, will we have security at the end? The second reason
is that security cannot be enforced by technical means only. The people in a company
need to understand, and adhere to, the security measures of their company. If they do
not, security incidents will be the result.

Experience shows that consensus can only be reached if the security policy exists in
a concise, written form and if everybody knows about it. Unfortunately policies often
only exist in the heads of the administrator, or are written so informally, that they can
be interpreted in many ways.

The Need for Firewall Testing
The bank from our above example becomes worthless if all doors are left wide-open.
Similarly, we can only be satisfied if a firewall is working as expected. Firewall testing is
a means to determine if a firewall correctly implements a given security policy.

What we should never forget when doing firewall testing is that an attack can come
from either inside or outside, and it need not have a criminal motivation.

1.1 State of the Art in Firewall Testing

This is just a short overview on the state of the art in firewall testing. More details can
be found in chapter 6.

Currently, firewall testing is mostly penetration testing [Sch96, WTS03]. Penetration
testing consists of scanning all the ports to find the open ones. It also includes running
known attacks against the firewall to find vulnerabilities. The problems with penetration
testing are manyfold:

1. Though there are tools for port scanning, their results as such are worthless. To be
of help, very time-intensive analyses of these results by experts are needed.

2. As new attacks occur every day, resistance against known attacks is only part of
the story. The more important part – whether a firewall would resist new attacks –
cannot be tested by penetration testing.

3. Penetration testing cannot determine if a firewall does what it is expected to.

Let us visualise these problems with the analogon of the door-lock. Consider a room with
a locked door where nobody has got a key to that door. Penetration testing consists in
many unauthorised persons trying to enter the room. They will not succeed. Therefore

2

CHAPTER 1. INTRODUCTION 1.2. GOAL

the door-lock will be assumed secure. The problem in this setting, namely that authorised
persons cannot enter the room either, is not found by penetration testing.

In the above example, the difference between vulnerability testing and conformance
testing can clearly be seen. Vulnerability testing searches for vulnerabilities (possible
attacks), whereas conformance testing analyses the conformance of a firewall to a policy.
Both methods are needed to achieve adequate security. Unfortunately, the only means for
conformance testing is rule analysis by experts.

1.2 Goal

The goal of this thesis is to develop a method for the specification-based testing of firewalls.
Such a method shall consist of the following ingredients:

• a formal language for the specification of security policies,

• a network model,

• algorithmic methods for generating the test cases, and

• tool support for carrying out tests.

Our thesis is that it is possible to construct such a method whose resulting
test-cases can be used to test whether a specific installation satisfies the stated
policy.

To be of practical use, the method should work for multiple firewalls. The ‘multiple’
can be understood in two ways: 1.) The method should work for products of different
vendors, and 2.) the method should work for more than one firewall in a network. Note
that the goal of this thesis is not to implement a tool, but to design a method. Therefore
only prototypical tool-support will be provided.

Note further that it is not our goal to find vulnerabilities but to test for conformance.
If the policy states that everything should be allowed, we are satisfied if the firewalls allow
everything. Thus we do not answer the question if a certain policy is secure. This must
be answered by expert analysis or vulnerability testing.

1.3 Possible Approaches

In this section we will elaborate on different, possible approaches to ensure the confor-
mance of a firewall to a given policy. Let us first introduce the terms used (see Figure 1.1).
We use the term informal policy to denote policies written in natural language. These
cannot be used for any kind of formal analysis. Therefore we need a policy with a clear
syntax and semantics, which we call a formal policy . The term firewall rules is used
to denote an actual firewall configuration in a vendor specific format, whereas the term
abstract firewall rules is used to denote firewall configuration in a vendor-independent

3

1.3. POSSIBLE APPROACHES CHAPTER 1. INTRODUCTION

high level informal policy
↓

formal policy
↓

abstract firewall rules
↓

firewall rules
↓

low level firewall

Figure 1.1: Policy versus rules

format. Finally, we use the term firewall to denote the behaviour of the firewall software
or hardware implementing given firewall rules. A firewall therefore consists of two parts:
configuration and implementation. Only if the firewall implementation is correct, the
conformance of a firewall to a policy can be deduced from the conformance of its firewall
rules to the policy.
The different approaches to ensure the conformance of a firewall to a given policy are to:

1. generate the firewall rules from the security policy,

2. prove the equivalence between a formal policy and an abstract firewall ruleset,

3. prove the equivalence between the abstract and the actual firewall rules,

4. generate the abstract firewall rules from the actual ones and then prove (theorem
proving) the equivalence to the formal policy, and

5. generate test cases from the formal policy and run them against the firewall.

Note that approaches 2 and 3 can only be used together. As actual firewall rules are
vendor- and release-dependent, all approaches using the firewall rules would need consid-
erable (re-)engineering. This re-engineering must be repeated every time a new firewall
software (version) is released. This is not very practical and also highly error-prone.
Furthermore, all these approaches assume the firewall implementation to be correct.

The 5th approach shown is the most general. It can be used independently of the
kind of firewall installed, as it treats the firewall as a black box. Furthermore, it is
the only approach that not only checks the firewall configuration (ruleset) but also the
firewall implementation1. Therefore we chose this approach. Thus we assume a testing
environment where the firewall rules are already present (i.e. written by hand). More
detail about this approach can be found in the next section.

1What does it help to have a ruleset conforming to a given policy if the firewall does not do what is
written in the ruleset (i.e. the firewall implementation is buggy)?

4

CHAPTER 1. INTRODUCTION 1.4. OVERVIEW OF OUR APPROACH

low level

firewall

rules

keyword

definitionsnetwork layout
abstract

firewall rules

firewall

rules

high level

state of the art our approach

informal

security policy
formal

network policy

informal

security policy

(w.o. network)

test

cases

Generator

test

cases

Figure 1.2: Overview

1.4 Overview of our Approach

In this section we give a short overview of our approach. All elements of our approach
and their relation can be found in Figure 1.2.

Policy Current security policies are normally informal and can therefore not be used to
reason about them in a formal manner. There exist even companies that have no written
policy at all. But to be able to determine if a firewall implements a given security policy,
at least the network policy (which is part of the security policy) needs to be formally
stated. Such a formal network policy (formal policy) must specify what shall be allowed
(but not how this should be done). Our formal policy is expressed at a high-level; this
way it is both manageable and understandable by managers as well as security specialists.
See section 3.2 for more on this topic.

Low-level details To test a firewall against a given formal policy, low-level details are
needed. Consider the following policy statement: “only secure connections are allowed
from the Internet to our corporate network.” To be able to test this statement, we need
to know what secure connections are and what our network looks like. This low-level
information, which may be subject to frequent change, is stored separate from the policy
in the so-called keyword definitions and the network layout respectively. See Sections 2.3,
3.1, and 3.2 for more on this topic.

Test case generation The formal network policy, the network layout and the keyword
definitions provide all the information we need for automatically generating test tuples .
These test tuples can then be used to instantiate the abstract test cases, representing the
firewall implementation, to get concrete test cases. A concrete test case consists of several

5

1.5. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

network packets, and an expected result for each. These network packets are inserted to
the network on one side of the firewall, and the “answer” of the firewall is compared to
the expectation. Note that such a test must not be done in a production network, but in
a copy of it. See section 4.3 for more on this topic.

Test evaluation An unexpected test outcome can result from:

• An error in the firewall configuration (the firewall rules do not correspond to the
formal network policy),

• a bug in the firewall implementation (the firewall is not doing what it is told by the
firewall rules),

• network problems (packets were changed or lost due to heavy network traffic), or

• a bug in our test environment.

To find the source of an unexpected test outcome, knowledge of the firewall rules
is needed. As we are treating firewalls as black boxes, we do not have this knowledge.
Therefore, the test evaluation cannot be fully automated. This represents no problem,
as an expert can easily find the problem when given the unsuccessful test case, together
with the policy-rule it was generated from.

1.5 Contributions

Our results can be divided into two parts.

First part In the first part of this thesis, a method, as described in section 1.4, is
designed. It consists of a language for the formal specification of security policies and a
method for the automatic generation of test cases from such a policy. Using prototype tool
support, we validated our thesis – it is possible to construct a method (for the specification-
based testing of firewalls) whose resulting test-cases can be used to test whether a specific
installation satisfies the stated policy – by applying our method to a real-world scenario.

Our contribution for Part I is the first method for firewall conformance testing. It ad-
vances the state-of-the-art by eliminating time-intensive, highly error-prone rule analyses
of experts.

Second part Apart from the policy, we needed another specification. To test if a firewall
handles a certain connection correctly, it does not suffice to know if the connection should
be allowed or not. Additionally we need to know how the connection (the protocol)
should be handled by the firewall. To our knowledge, this important problem has not
been tackled before.

6

CHAPTER 1. INTRODUCTION 1.6. ORGANISATION OF THIS THESIS

In the second part we therefore analyse why a protocol specification for a firewall, or
more general a midpoint, needs to be different from a protocol specification for endpoints.
Based on this analysis we present an algorithm to transform (endpoint) protocol specifi-
cations into midpoint specifications. We prove the correctness of this algorithm and show
its applicability to the TCP protocol.

Our contributions for Part II are an analysis of why different protocol specifications
are needed for midpoints than for endpoints, what the implications of a lack of such
specifications are, and an algorithm to generate midpoint specifications from endpoint
specifications. We prove that the midpoint automata constructed by our algorithm for-
ward only those messages that could have resulted from protocol-conform endpoints.

Our solution should be of interest to at least two groups: those building midpoints
and those analysing (e.g. testing) them. It advances the state-of-the-art by being the
first general method to systematically construct midpoint specifications from those for
endpoints. Only by having such a method, the specification-based testing of firewalls is
possible.

1.6 Organisation of this Thesis

As already stated, this thesis consists of two main parts. Both of them build on basic
knowledge given in chapter 2.

The first part consists of defining Network Layout, Keyword Definitions and Formal
Policy, introduced above, in chapter 3. This is followed by our test methodology in
chapter 4, which is then validated in chapter 5. In chapter 6 we provide a comparison to
related work. We summarise the first part in chapter 7.

The second part is organised as follows. In chapter 8, we explain why midpoints (fire-
walls) are different from endpoints and therefore need their own protocol specifications.
In chapter 9, we present an algorithm to generate a midpoint automaton from endpoint
automata and prove it correct. We discuss and summarise the second part in chapter 10.

Finally, in chapter 11, overall conclusions are drawn and the most important future
work is discussed.

7

Chapter 2

Background

In this chapter we elaborate on the basic concepts on which we build our work, namely
Mealy Machines, Network Protocols, Security Policies, Firewalls, and Testing.

2.1 Mealy Machines

Network protocols can be understood as Mealy machines (automata) [Mea55]. Firewalls
filter protocol messages and their implementations consist of one or more Mealy machines.
In short, a Mealy machine is an automaton taking inputs and returning outputs based on
its current state. Formally, a Mealy machine is defined as a six-tuple

M = (Q, Σ, Γ, δ, λ, q1)

where

• Q = {q1, q2, ..., q|Q|} is a finite set of states ;

• Σ = {σ1, σ2, ..., σ|Σ|} is a finite input alphabet ;

• Γ = {γ1, γ2, ..., γ|Γ|} is a finite output alphabet ;

• δ : Q× Σ→ Q is the transition function;

• λ : Q× Σ→ Γ is the output function;

• q1 ∈ Q is the initial state.

Automata are often specified graphically. Figure 2.1 is an example of a graphical
representation of a Mealy machine. In this example, q1, q2 and q3 represent states, where
q1 is the start state and q3 is an accepting state (or final state). If an accepting state is
reached, using some input, the input is accepted. In a ticket machine, for example, the
accepting state is the state where enough money for the chosen ticket has been inserted,
which will result in issuing the ticket. The arrow from q1 to q2 represents a transition with
input x and output y. Note that in this example, the accepting state q3 is not reachable.
Throughout this thesis we use ’−’ to denote empty input or output.

9

2.2. NETWORK PROTOCOLS CHAPTER 2. BACKGROUND

q1 q2 q3

x / y

Figure 2.1: A graphical Mealy machine

2.2 Network Protocols

Today, nearly every computer is connected to a network through which it can communicate
with other computers. In this section, we explain the points about such communications
that are relevant for our work.

Internet layer
Communication in the digital world happens between unique addresses, so-called IP ad-
dresses, using network packets. The forwarding of these packets is done by devices that
are called Routers . All this forms the internet layer. Its job is to deliver packets to their
destination IP address.

There are two different types of IP addresses: IPv4 (IP version 4) [ISI81a] and IPv6
[CN98]. An IPv4 address is composed of four octets. Thus there are 24∗8 different IPv4
addresses between 0.0.0.0 and 255.255.255.255. Some of them are special. 10.x.x.x,
172.16.x.x, 192.168.x.x for example represent private address spaces and are not routed
in the Internet.

The use of the Internet in the developing world and from mobile devices led to a need
for more than the available 232 IPv4-addresses. One solution for this problem is to map
several private IP addresses to one public address (Network Address Translation – NAT
[SCR+96, ST99])1. The real solution would be to switch to IPv6, which is intended as
replacement of IPv4. IPv6 offers 2128 different addresses. An address consists of 8 blocks
of 16 bit.

On top of the internet layer there are further layers: the transport layer and the
application layer. The idea is that every layer uses the services of the next-lower layer
and just add additional services. Note that, contrary to the ISO/OSI model [Org96],
the internet protocol suite (TCP/IP reference model) has no further layers between the
internet layer (OSI layer 3), the transport layer (OSI layer 4) and the application layer
(OSI layers 5 – 7).

Transport layer
The transport layer is the next-higher layer after the internet layer. The most important
protocol in this layer is the Transmission Control Protocol [ISI81b]. TCP is used for flow
control, reliability, and multiplexing purposes.

1As the private IP addresses are not routed in the Internet, every institution can use the same ones.

10

CHAPTER 2. BACKGROUND 2.2. NETWORK PROTOCOLS

Alice message sent Bob
CLOSED LISTEN
SYN-SENT — SYN →

← SYN & ACK — SYN-RECEIVED
ESTABLISHED — ACK → ESTABLISHED

Figure 2.2: TCP three-way-handshake

How can it be ensured that all packets reach their destination? This is done by the
use of sequence numbers. We will explain their use with the help of an example. Consider
Alice sends the three packets 11 – 14 to Bob. This helps Bob to know in which order he
has to read the packets and to see if some intermediate packet is missing: if he receives
11, 12 and 14, then he knows that 13 is missing. But what if Bob only receives packets
11 and 12? He cannot know if there need to be more packets. But Alice knows! Thus
when Bob sends an answer to Alice (numbered with his own sequence number), he also
tells her which packet number (= acknowledgement number) he expects next from her
(13 in this case). In this way Alice knows which packets he received and can resend (=
retransmission) the missing packets (here 13 and 14).

The sequence and acknowledgement number, together with so-called flags – named
SYN, ACK, FIN, URG, PSH, and RST – are part of the TCP header. The flags are
used for different purposes like the connection initiation (SYN: synchronising on the first
sequence number), marking the presence of an acknowledgement number (ACK), and the
connection closing (FIN). This means that the individual packets are independent at the
IP level, whereas the communication at the TCP level is connection-based.

The TCP connection initiation is shown in Figure 2.2. CLOSED, LISTEN, and so on
therein represent the states of the endpoints: TCP is implemented as Mealy machine by
the endpoints. In the given setting, Alice is called the initiator of the connection, whereas
Bob is called the responder of the connection.

Application layer
In the internet protocol suite, the application layer is the next-higher layer after the
transport layer. It comprises protocols like http, ftp, and so on. Like with TCP and IP,
the application level protocols use the next-lower protocol (TCP in this case) and just
add some additional information. Like in the TCP case, some of this information is added
in the form of a header. But here also the data part is important. We will explain this
with the help of two examples.

Voice over IP (VoIP) [RSC+02, ITU03] for example consists of several protocols in
series, where the connection information for one protocol can be found in the data part
of the previous protocol. This means that both endpoints and intermediate firewalls need
to be able to extract this connection information. If for example an intermediate firewall
fails to extract this information, and allow the corresponding connections, then VoIP will
not be possible.

11

2.3. SECURITY POLICY CHAPTER 2. BACKGROUND

The content of a website represents the data part of the http protocol. A company
that does not want their employees to visit certain websites (racism, pornography, . . .),
therefore needs to be able to block http-traffic based on its data part. This can be done
with the help of an application layer firewall that parses the data part of http-traffic and
blocks all the packets that contain words from a blacklist.

2.3 Security Policy

The American National Institute of Standards and Technology (NIST) defines the term
computer security policy as “documentation of computer security decisions” [oSN95]. An-
other definition is “A security policy is a formal statement of the rules by which people
who are given access to an organization’s technology and information assets must abide.”
[Gro97].

The policy statements can be grouped under the following headings:

1. Corporate Policy

2. Information Security Policy

3. Personnel Security Policy

4. Physical and Environmental Security Policy

5. Computer and Networks Security Policy

– System Administration

– Network Policy

– Application Development Policy

6. Business Continuity Planning

A policy should describe a certain security topic, why it is needed (important), and
explain what is allowed and what is not allowed. It should contain general directives that
are not architecture or system dependent. A policy should also tackle enforcement, i.e. it
should be clear what disciplinary measures are to be expected if the policy is breached.
Policies should be concise, a good balance of productivity and security, be backed up by
appropriate security tools, and be easy to understand.

Policy versus Model
As explained above, a policy is normally an informal statement about everything, includ-
ing physical or administrative issues, that has to do with security at a specific site (or
for a specific system). In contrast, a model is generally expressed in a formal language
(including proofs for correctness, consistency, ...) where characteristics of policies are
explicitly stated. Therefore models are used to write policies.

12

CHAPTER 2. BACKGROUND 2.4. FIREWALLS

An example is the Bell-LaPadula model [BL73]. Its purpose is to prevent that con-
fidential information (object) is given to non-trustworthy persons (subject). To achieve
this purpose, objects are assigned security labels, e.g. confidential, and subjects are given
clearance for a security label. A subject is then only allowed to read objects that are
at most his security label (simple security property : no read-up) and to write documents
with at least his security label (* property : no write-down).

Examples
The following are some representative excerpts of security policies:

[Uni03] “The RMITCS data stored on RMITCS computer systems [...] should be protected
from unauthorised access, removal or destruction.”

[oCS03] “All departmental computers which are accessible on the public Internet should have
all non-essential services disabled, to minimise the possibility of security compro-
mises.”

[UoI03] “However, the owner of a privately owned machine is responsible for the behaviour
of the processes running on that machine and all the network traffic to and from
the machine.”

All these examples visualise one problem with informal policies: they are not precise
enough. What is unauthorised access? What is a non-essential service? What falls under
a security compromise? When, and what for, is an owner of a private machine made
responsible and how?

2.4 Firewalls

The computing world uses the term firewall for hardware or software that is put between
two (or more) networks to prevent communication forbidden by the network policy. A
firewall normally runs on a dedicated network device or computer. Such a firewall filters all
the traffic entering or leaving the connected networks. Filtering means deciding whether or
not each network packet is allowed to cross the boundary between the two networks. More
sophisticated filtering also modifies packets. NAT (translating the private IP addresses of
hosts behind a firewall to routable addresses), for example, can be done by firewalls.

Two major categories One can distinguish between two major categories of firewalls:

• packet filters, which work at the transport layer, and

• application layer firewalls, which work at the application layer.

These two types of firewalls may overlap, indeed some systems implement both. A proxy
device may act as a firewall by responding to input packets in the manner of an application,
whilst blocking other packets.

13

2.4. FIREWALLS CHAPTER 2. BACKGROUND

1 # de l e t e everyth ing
2 / sb in / i p t a b l e s −F
3 / sb in / i p t a b l e s −X
4

5 # al low a l l outgo ing
6 / sb in / i p t a b l e s −P OUTPUT ACCEPT
7

8 # al low only incoming ssh
9 # (and r e l a t e d or e s t a b l i s h ed connec t i ons)

10 / sb in / i p t a b l e s −P INPUT DROP
11 / sb in / i p t a b l e s −A INPUT −p tcp −−syn −−dport ssh −j ACCEPT
12 / sb in / i p t a b l e s −A INPUT −m sta t e −−s t a t e RELATED,ESTABLISHED\
13 −j ACCEPT
14

15 # al low connec t i ons from l o c a l h o s t to l o c a l h o s t
16 / sb in / i p t a b l e s −A INPUT −d 1 2 7 . 0 . 0 . 1 −j ACCEPT

Figure 2.3: An example of an iptables ruleset (stateful)

Firewall configuration versus implementation What is important to understand
is the difference between the firewall configuration, by a so-called ruleset , and the firewall
implementation. The firewall implementation is the software or hardware delivered by the
firewall vendor. The firewall configuration consists of rules that tell the firewall what to
do. This means that there exist many firewalls with the same implementation (including
firmware, patchlevel, . . .), but most probably there are no two firewalls with the same
configuration.

Proper configuration of firewalls demands skill. It requires considerable understanding
of network protocols and of computer security. Small mistakes can render a firewall
worthless as a security tool. Trust in misconfigured firewalls is misplaced indeed.

Types of packet filters When speaking of packet filters, two types have to be distin-
guished: stateless and stateful packet filters. Stateless and stateful refer to the kind of
protocol inspection made by the packet filter. Let us explain the difference between the
two types with the help of the stateful TCP protocol. If one endpoint, say Alice, wants a
TCP connection to another endpoint, say Bob, then she has to initiate it with the three-
way-handshake shown in Figure 2.2. Having a stateless packet filter, each of these three
messages will be examined (i.e. compared to the firewall rules) separately, whereas with
stateful inspection, the firewall remembers the messages seen so far (i.e. the state of the
connection)2.

Thus with stateless packet filters we cannot constrain incoming packets to answers (we

2It does so by having an internal automaton for the TCP protocol.

14

CHAPTER 2. BACKGROUND 2.4. FIREWALLS

1 # de l e t e everyth ing
2 / sb in / ipcha in s −F
3 / sb in / ipcha in s −X
4

5 # al low a l l outgo ing (and incoming : answers) t r a f f i c
6 / sb in / ipcha in s −P output ACCEPT
7

8 # al low incoming ssh and answers
9 / sb in / ipcha in s −P input DROP

10 / sb in / ipcha in s −A input −p tcp −−dport ssh −j ACCEPT
11 / sb in / ipcha in s −A input −p tcp −y −−syn −j DROP
12 / sb in / ipcha in s −A input −p tcp −j ACCEPT
13

14 # al low connec t i ons from l o c a l h o s t to l o c a l h o s t
15 / sb in / ipcha in s −A input −d 1 2 7 . 0 . 0 . 1 −j ACCEPT

Figure 2.4: An example of an ipchains ruleset (stateless)

can only constrain it to non-SYN packets, which can be more than answers), whereas with
stateful packet filters we can. Let us explain this with an example. Figure 2.4 shows a
ruleset for the stateless ipchains firewall, whereas Figure 2.3 shows a ruleset for the stateful
iptables firewall (the successor of ipchains)3. Both should implement the following policy:
everybody in our company network can connect to any machine on the Internet, using
any protocol they want, but external people can only connect to our machines using ssh.

In iptables we can perfectly implement this policy by stating that everything is allowed
if the initiator of a connection is inside (line 6). But from the outside we only allow ssh
to be initiated (line 11). Other traffic from the outside is only allowed if it is an answer
(line 12), i.e. belonging to an existing connection.

In ipchains we cannot base the rules on the state of a connection. It is therefore not
possible to determine if a packet at hand represents an answer. We can only determine if
the connection it belongs to is allowed. The only measure we can take is to block external
SYN-packets (line 11). This will make the task of connecting to our machines from the
outside more difficult, but unfortunately will not render it impossible.

Stateless packet filters are not anymore used in practice. This is due to the fact that
they are less powerful than stateful packet filters. We therefore do not consider them in
our work.

Correct firewall configuration is difficult For this simple example, the configuration
of iptables was simple. But for more complex networks we need thousands of rules making
the whole task very error-prone. Other problems are that every brand of firewall has its

3For details on the iptables firewall, which is the Linux default, refer to Appendix D .

15

2.5. TESTING IN GENERAL CHAPTER 2. BACKGROUND

own rule language. Even general concepts like the order of rule-matching (first vs. last
rule that matches is used) differ between the different rule languages. Sometimes there
are even hidden default rules one might not want: Checkpoint for example has a lot of
these rules. They call them global properties. By default, properties like “Accept outgoing
packets originating from Gateway” and “Accept VPN-1 & FireWall-1 control connections”
are allowed. To see the impact of these global properties, the user has to choose to see
implied rules in his ruleset. All this makes the task of proper firewall configuration even
more difficult and is a prominent source of errors.

2.5 Testing in General

Testing is used for validation (Am I building the right system?), not to be confused with
verification (Am I building the system right?) done by model checking and theorem
proving.

There are more-or-less two different kinds of testing: white box and black box testing
[Mye04]. White box testing is code-based. It consists of testing whether all the code is
executed or whether copies of the code with inserted faults can be distinguished from the
original. Black-box testing is specification-based. It tests whether the code implements
the specification. As the name already suggests, the code cannot be used to determine
the answer. The testing consists of feeding the test data (input) to the system under test
(SUT) and comparing the output of the system with the expected test output (results). As
we want a methodology that is applicable to any kind of firewall, we do black box testing.

To determine if a test was successful, the expected test outcome has to be known in
advance. Therefore every test case must consist of test data and expected test output.

Criteria for test cases The difficult part in (automated) testing is to find good test
cases. Some of the first definitions in this direction can be found in a paper by J. Good-
enough and S. Gerhart [GG75]. In this paper, the authors show how to define criteria
which test data must satisfy such that a successful execution of the test data implies
that there are no errors in a tested program. In general, such criteria C must be reliable
and valid . In short, reliability refers to the consistency with which results are produced,
regardless of whether the results are meaningful. Validity, in contrast to reliability, cus-
tomarily refers to the ability to produce meaningful results, regardless of how consistently
such results are produced. A test set is called complete, according to a given test data
selection criterion C, if it satisfies C. A test set is called successful if the result of every
test is as expected. This leads to the fundamental theorem of testing : Given a test set T
and a test data selection criterion C for a program P; if T is complete according to C, C
is reliable and valid, and the execution of T is successful, then P is correct.

Other researchers have also defined criteria for test cases. The following two definitions
state the same as Goodenough and Gerhart, but in a more formal way.
Definition (test case reliability) [How76]: If P is a program to implement function

16

CHAPTER 2. BACKGROUND 2.6. TEST CASE GENERATION

F on domain D, then a test set T ⊂ D is reliable for P and F if ∀ t ∈ T, P(t) = F(t) ⇒ ∀
d ∈ D, P(d) = F(d).
Definition (test case adequacy) [BA82]: If P is a program to implement function F
on domain D, then a test set T ⊂ D is adequate for P and F if for all programs Q, if Q(D)
6= F(D) ⇒ ∃ t ∈ T such that Q(t) 6= F(t).

Unfortunately there is no effective procedure for either generating adequate test sets
or for detecting that a given test set is adequate. Thus the crux of the testing problem is
to find an adequate test set, one large enough to span the domain and yet small enough
that the testing process can be performed for each element in the set [ABC82].

2.6 Test Case Generation for Mealy Machines

As stated in section 2.4, firewalls are implemented by the means of Mealy machines. To
black box test firewalls, we therefore need to generate test cases from Mealy machines.
In this section we give a survey on the most common methods for this purpose. We will
later use one of these methods for our test case generation in subsection 4.3.1.

2.6.1 General Introduction

There exist many methods to generate test cases for automata. In this thesis we are
interested in the problem of Machine Verification (Conformance Testing). Conformance
Testing consists of testing whether an implementation machine IMP conforms (is equiva-
lent) to the specification machine SPEC. Two finite state machines (FSMs) are equivalent
if in their minimised version they have the same number of states, and if there exists
a one-to-one correspondence between equivalent states. Two states are equivalent if for
every input sequence the machine produces the same output sequence4.

Assumptions The following assumptions are usually made in conformance testing:

• SPEC is strongly connected : A machine M is strongly connected if for any two states
s and s’ of M, s’ is reachable from s.

• SPEC is reduced : all states are pair-wise distinguishable.

• IMP does not change during the experiment and has the same input alphabet as
SPEC.

• IMP does not have more states than SPEC.

4Said in other words: If we have two completely specified, minimal automata with the same number
of states, all of which equal (i.e. having the same outgoing transitions), they must be the same.

17

2.6. TEST CASE GENERATION CHAPTER 2. BACKGROUND

Some methods also make one or more of the following assumptions about SPEC or IMP:

• minimal : there is no equivalent FSM with fewer states.

• completely specified : each state has outgoing transitions for every input symbol.
Normally it is also okay if we have an incompletely specified FSM where non-core
input (input for which there is no transition) is ignored.

• fixed initial state: the FSM always starts in the same state (start state).

• every state is reachable: starting from the start state, every other state can be
reached by traversing a finite number of transitions.

• deterministic: at each state there is only one possible transition per input symbol
(as opposed to multiple possibilities in non-deterministic automata).

• reliable reset : there is a reset input which brings the FSM back into its start state
(from any other state).

Fault detection The faults that can be found are the following:

• Operation error: an error in the output function δ.

• Transfer error: an error in the next-state function λ.

• Extra or missing states.

A method is said to have full fault coverage if it can find all these faults.

Basic test structure The basic structure of all test methods for solving this problem
is similar: we want to make sure that every transition of the specification FSM SPEC is
correctly implemented in FSM IMP. This is achieved as follows: for every transition of
SPEC, say from state si to state sj , do the following:

1) Bring machine IMP into the initial state s1.

2) Transfer machine IMP into state si.

3) Test the transition (apply its input and see if the output is correct).

4) Verify that the automaton now is in state sj .

Step one is easy if there is a reliable reset: Just apply the reset input to go back to the
initial state. If there is no reset input, a homing sequence can be constructed to fulfil
this task. We do not further elaborate on how this is done. Refer to [Gil62] for more
information on this topic.
Steps two and three can be solved by building a test tree T (see Figure 2.5 for an
example) according to the following rules [Cho78] and then walking along all the paths:

18

CHAPTER 2. BACKGROUND 2.6. TEST CASE GENERATION

Figure 2.5: Test Tree for tcp

a) Label the root of T with the initial state of SPEC. This is level 1 of T.

b) Suppose we have already built T to a level k. The (k+1)-th level is built by examin-
ing nodes in the k-th level from left to right. A node in the k-th level is terminated if
its label is the same as a nonterminal at some level j, j ≤ k. Otherwise, let SPECi

denote its label. If on input x, machine SPEC goes from state SPECi to state
SPECj, we attach a branch and a successor node to the node labelled SPECi in T.
The branch and the successor nodes are labelled with x and SPECj, respectively.

Step four is the one where the test methods differ. In the following we present the
most common methods, namely distinguishing sequences [Gil61, Gil62], the W-method
[Cho78], UIO sequences [SD88], the partial W-method [FvBK+91], and the UIOv method
[CVI89]. For more information about these methods please refer to the original papers or
to the overview paper by Lee and Yannakakis [LY96].

2.6.2 Verifying the State of a FSM

W-Method [Cho78]
Assumptions on the FSMs: completely specified, minimal, start with a fixed initial state,
every state is reachable.

19

2.6. TEST CASE GENERATION CHAPTER 2. BACKGROUND

The W-method uses the characterisation set W (W-set) for accomplishing step four. A
characterisation set is a set of input sequences that can distinguish between the behaviour
of every pair of states. This means that no two states have the same output for all of
these inputs:

∀si, sj ∃x ∈W . i 6= j → λ(si, x) 6= λ(sj , x)

Contrary to other methods, the W-method does not assume the implementation FSM to
have the same number of states as the specification FSM. In the W-method, the maximum
number of states in the implementation – denoted by m – is estimated by the tester. Using
the set

Z = W ∪X ·W ∪ · · · ∪Xm−n ·W, where

X = input alphabet

n = number of states of the specification

X ·W = concatenation of the strings X and W

instead of W, the W-method will find all faults in the implementation if it has at most m
states.
The complete W-method (steps 1 – 4) consists of

P.Z = {p · z|p ∈ P, z ∈ Z},

where P consists of all partial paths (including {}) in the testing tree (steps two and
three). P is called the P set or the transition cover set .

partial W-Method (Wp-Method) [FvBK+91]
Assumptions on the FSMs: as for the W-method.
This method is a variation of the W-method which has the same fault coverage but
provides shorter test sequences. Additionally to Z and P from the W-method, we need
the state cover set Q :

∀si ∈ SPEC ∃pi ∈ Q . λ(s1, pi) = si

The Wp-Method consists of two phases:

Phase 1: Q.Z

Phase 2: R⊗W =
⋃

p∈R

{p}.Wj, where

R = P \Q

The test sequences of the Wp-method are shorter than those of the W-method because
in the Wp-method, Z is used only once per state (the shorter W is used for the other
transitions) whereas in the W-method Z is used for every transition.

20

CHAPTER 2. BACKGROUND 2.6. TEST CASE GENERATION

Unique Input-Output (UIO) sequences method [SD88]
Assumptions on the FSMs: deterministic, initial state, every state reachable, reliable
reset, minimal, either completely specified or non-core input is ignored (completeness
assumption).
The UIO method uses UIO sequences for accomplishing step four. A UIO sequence is a
sequence x for a state s that distinguishes state s from all other states:

∀sj∃x∀si . i 6= j → λ(si, x) 6= λ(sj , x)

Contrary to the initial claim, this method does not have full fault coverage. The problem
occurs when a UIO sequence is not unique in a faulty implementation. This problem was
resolved in the UIOv method.

UIOv method [CVI89]
Assumptions on the FSMs: the same as for UIO, plus completely specified.
The problem of the UIO method is solved by the UIOv method by adding a verification
step ˜Uv before the testing. The idea of ˜Uv is to verify that the UIO sequences indeed
are unique or, if not, to detect the faulty state. This is done by applying all different input
sequences from all UIO sequences to all states and verifying that every UIO sequence is
encountered only once.
The UIOv method has full fault coverage if the number of states in the implementation
is the same as in the specification.

Distinguishing Sequences (DS) method [Gil61, Gil62]
The Distinguishing Sequences method uses Distinguishing Sequences for step four. A
distinguishing sequence (or generally a test) can be preset — if an input sequence is fixed
ahead of time — or can be adaptive — if at each step of the test, the next input symbol
depends on the previously observed outputs. Preset DSs are a special case of a W-set (see
W-method): A W-set with only one sequence. That is, an input sequence that produces
different output for each initial state:

∃x∀si, sj . i 6= j → λ(si, x) 6= λ(sj, x)

Therefore DSs can also be used for state identification (determining the current state of
an automaton) and a reliable reset is not required. The problem is that not every FSM
has a DS.

Summary
We have seen three methods (plus two variations) for the testing of Mealy Machines. The
difference lies in the number of input sequences that are used. By looking at the formulas
from above, we can compute the number of input sequences used (n = number of states):

21

2.6. TEST CASE GENERATION CHAPTER 2. BACKGROUND

method definition of input sequences x number of sequences

W ∀si, sj∃x . i 6= j → λ(si, x) 6= λ(sj, x) n∗(n−1)
2

UIO ∀sj∃x∀si . i 6= j → λ(si, x) 6= λ(sj, x) n

DS ∃x∀si, sj . i 6= j → λ(si, x) 6= λ(sj, x) 1

By looking at the formulas, we see that the W-method uses an input sequence x per
pair of states, whereas the UIO sequences method uses an input sequence per state, and
the DS method uses only one sequence at all.

2.6.3 Time of Generation: adaptive vs. preset

As mentioned in the description of the DS-method, there are basically two possibilities of
test case generation (for all methods): adaptive and preset. A preset test case is generated
before use, whereas with an adaptive test case the next input is determined in reaction
to the previously observed output. In this section we will discuss the advantages and
disadvantages of both approaches. Later, in section 4.4, we will combine both approaches
for our tests.

Preset experiment The biggest advantage of a preset experiment is that the generated
test cases can be reused. Additionally, the generation is easy and not time critical. The
disadvantages are that not all information is available at that time – In the case of NAT,
for example, the source port of a packet after the firewall might not be known in advance.
– which results in incorrect test cases. Furthermore, as no correction or reaction is possible
during the tests, we need many test cases: one for every possible reaction of the system.

Adaptive experiment The main advantage of an adaptive experiment is that the test
can be based on the reaction of the system under test. This means fewer and correct test
cases. The disadvantages are time and storage overhead: Time is needed for the building
of test cases on the fly. Storage is needed to carry along all possible scenarios.

2.6.4 Comparison of the Methods

The UIO method has shorter test cases than the W- and the DS methods. Also UIO
sequences nearly always exist (and if they do not, a special signature can be used instead).
As long as only the DS, the W and the UIO method existed – and one believed they all
have the same fault coverage – the UIO method was the best choice.

Taking the newer methods (UIOv and Wp) into account, the UIOv method is a special
case of the Wp-method, and the DS method is a special case of the UIOv method. All
have full fault coverage. This means that the Wp-method is the most general and most
widely applicable method from these three. As the Wp-method achieves the same fault
coverage as the W-method but with shorter test sequences, and as the UIO method has

22

CHAPTER 2. BACKGROUND 2.6. TEST CASE GENERATION

no full fault coverage, it is in general the best to choose the Wp-method. Therefore we
will use the Wp-method. Information on how we incorporate it into our setting can be
found in subsection 4.3.1.

23

Part I

Specification-based Firewall Testing

25

Chapter 3

Specification

The first part of this thesis gives an overview of our methodology for specification-based
firewall testing. It concentrates on testing the configuration of a firewall. In this chapter,
we start by introducing the specifications we need.

3.1 Network Layout

As stated in section 2.4, firewalls are machines that filter traffic between two or more
networks. All the traffic between these networks has to pass the firewall. To test a
firewall for conformance to a policy, we need low-level information about the firewall
and its adjacent networks. To determine the information we need, we first analyse the
ingredients of a network.

Andrew Tanenbaum defines a computer network as an interconnected collection of
autonomous computers [Tan96]. We distinguish between three types of such computers:
clients , servers, and routers. A router is as defined in section 2.2. A server is a computer
offering a service to others. All the remaining computers are clients. Note that firewalls
normally are routers (or sit just next to a router). Therefore we will make no distinction
between routers and firewalls. Note that it is considered good security practice not to
mix the different types of computers. We therefore assume clients, servers and routers to
be distinct.

Graphical network layout Network layouts are often visualised to help people under-
stand them. One example of such a drawing can be found in Figure 3.1. It consists of
three networks (clouds), and two firewalls (FW1, FW2) separating these networks. Fur-
thermore, there are two servers in the demilitarised zone (DMZ). As servers need to be
accessed, we need to know where they are (and then talk about from where and how they
should be accessed). Note that we do not differentiate the clients in the Intranet. We
assume that all clients in a zone are equivalent, in that differences in their IP addresses
have no effect on the firewalls’ behaviour. This represents our uniformity hypothesis. The
justification for this uniformity hypothesis is that it is considered good network layout

27

3.1. NETWORK LAYOUT CHAPTER 3. SPECIFICATION

DMZ

Private
(Intranet)

Public
(Internet)

Mailserver

Webserver

FW2

FW1

eth0

 eth0

 eth1

eth1

Figure 3.1: A typical network layout

practice to put clients with different rights into different networks. Customer information,
for example, should not be endangered by havoc running tests.

The network layout in Figure 3.1 is typical for small companies. The DMZ is used for
servers which need to be accessible from the outside world. The firewall FW1 regulates
the accesses to these servers whereas FW2 protects the internal computers (which may
store sensitive data) and network infrastructure from unauthorised outside access.

Textual network layout Whereas a graphical representation of a network is useful for
people, a textual representation is needed for the use in an automated test case generation.
The information needed can be divided into three categories: networks, firewalls and
servers.

For the networks we need the mapping between name and IP address-range because
policy specification is done using network names, but test packets need IP addresses.

For the firewalls we need to know the IP addresses of their interfaces and their capa-
bilities. The IP addresses of the firewall interfaces tell us which networks are adjacent to
which firewalls. To be able to test a connection between two networks, we need to know
which firewall separates these networks. The capabilities — packet filter or application
level firewall — tell us at which level we have to test.

For the servers we need to know the IP addresses and the services they offer. The
need for IP addresses is the same as with the networks. With the services it is different:
They are not needed for firewall testing — whether a firewall forwards some protocol to
a server does not depend on the server accepting that protocol — but intended as a help
to the policy writer.

Specification language To specify this low-level information, we designed the language
given in Figure 3.2. We will call specifications written in this language network layout .
Note that the language at hand is very simple on purpose. Our aim was to make it
very easy to specify a network layout. The language contains all the needed elements, as

28

CHAPTER 3. SPECIFICATION 3.1. NETWORK LAYOUT

NETLAYOUT = NETWORKS ’∗ ∗ ∗’ FIREWALLS ’∗ ∗ ∗’ SERVERS
NETWORKS = {NET | COMMENT}
NET = NAME’:’ RANGE {’,’ RANGE}
NAME = letter {letter | digit} .
RANGE = IP’/’DD | ’ !’NAME
IP = DDD’.’DDD’.’DDD’.’DDD .
D = [digit] .
COMMENT = ’@’ TEXT ’\n’
TEXT = {letter | digit | ’ ’}
FIREWALLS = {FIREWALL | COMMENT}
FIREWALL = FW IF PROP
FW = NAME
IF = [’eth’digit] ’(’IP’)’
PROP = [TEXT]
SERVERS = {SERVER | COMMENT}
SERVER = NAME IP PROTO

Figure 3.2: Grammar for textual network layout

DMZ: 172.16.72.0/24
Private (Intranet): 192.168.70.0/24
Internet: !DMZ, !Private

∗ ∗ ∗
@ Name of the Firewall Interface Type
FW1 eth0 (129.132.178.193)
FW1 eth1 (172.16.72.1)
FW2 eth0 (172.16.72.3) Packet filter
FW2 eth1 (192.168.70.3) Packet filter

∗ ∗ ∗
@ Name (fac.) IP Service
Mailserver 172.16.72.4 smtp
Mailserver 172.16.72.4 imap
Webserver 172.16.72.5 http

Figure 3.3: A sample textual network layout

29

3.2. FORMAL POLICY CHAPTER 3. SPECIFICATION

identified above. An example of its use can be found in Figure 3.3, which is the textual
representation of Figure 3.1.

There are different ways to gather the information needed for the network layout:
discovery1 and declaration. We do not have preferences in how to acquire this data. Our
testing methodology is independent of how this information is gathered. It only has to be
valid and (preferably) complete.

As humans prefer graphical representations, the specification of the network layout
can also be done graphically. For the use in our test case generation, such a graphical
specification can be converted to a textual one. For this purpose, a tool called NetMap
has been written by Markus Frauenfelder [Fra05]. More information about this tool can
be found in section 5.1.

3.2 Formal Policy and Keyword Definitions

As stated in section 2.3, a security policy should express what should be achieved and
not how it should be achieved. Consider the following example: An individual having
the policy to only travel to secure countries. This individual will stick to his policy
for his whole life. During this time, the interpretation of a secure country can change.
An armed conflict or the bird flu will most probably render a country insecure (for this
individual). Thus, before travelling somewhere, he might consider the recommendations
of the “Bundesamt für Gesundheit” on secure destinations.

By this example we can see very well that the abstract description (secure country) is
stable, but the concrete description changes over time. The abstract description defines
criteria that can be evaluated by a third-party (Bundesamt für Gesundheit) to get the
current concrete description. This shows very nicely why low-level (implementation)
details do not belong in a policy, which also holds for security policies. Thus when
designing a formal language for the specification of security policies, we incorporate this
separation of concerns.

Reasons for a formal policy Why do we have to formalise security policies? The
aim of our work is to test a given set of firewalls for conformance to a policy. For this,
the policy must be clearly defined. Thus we need a formal language to state at least the
network policy, which is part of the security policy.

In practice, network policies are either expressed informally (just some text) or as
access models. Most often a policy even does not exist in a written form, but only in
the head of the firewall administrator. Unfortunately, no formal policy language exists.
Therefore we have to design one. In the remainder of this thesis we will refer to a network
policy written in our policy language as a formal policy .

1The UNIX-commands /sbin/ifconfig and /sbin/route, for example, can be used on each firewall
to discover the information about the firewalls and the networks.

30

CHAPTER 3. SPECIFICATION 3.2. FORMAL POLICY

Demands on security policies There are only few companies using security policies.
Unfortunately, most of them do not want to disclose their policies because they fear that
this would have a negative influence on their security. Even if security by obscurity is not
something one should build upon, we have to live with this fact.

Due to the situation, we based our requirements analysis on a few policies from uni-
versities2 and on guides to developing security policies [Gro97]. We decided to start with
a simple policy language.

Our demands for a policy language are that it is high-level and stable. The intuition
for this demands is given by the above example, but there are also arguments. A policy
has to be stable mainly to minimise errors: Every change is inserting a possible error into
the policy. If changes happen too often, it is not feasible to check the policy every time
for correctness (= stating what we want). An additional issue is that changing a policy
too often, renders it nearly impossible for people to know what they have to adhere to.

A policy has to be high-level because Managers need to understand it (they are the
ones with the decision power), to get the big picture (firewall rulesets often have thousands
of rules making it impossible to determine what they are all about), and to make it stable.

Example (high-level and stable policy) We illustrate this at another example. Con-
sider the following two statements

1. “Only company employees are allowed to possess a key to the company’s main
entrance.”

2. “Only Fred, Bob, ... are allowed to possess a key to the company’s main entrance.”,
where Fred, Bob, ... are all employees of the company.

The first statement is preferable because of the following points:

• It is easy to understand (one does not have to think about the connection between
Fred, Bob, ...).

• It is always correct (we do not have to alter it every time somebody joins or leaves
the company).

• It is on the right level (being allowed to possess a key depends on a persons status
and not on his name. The mapping status to names can then be made by the HR
department which does not have to know anything about this policy).

Specification language After having discussed the nature of a formal policy, let us
discuss its ingredients. Recall our setting, where we have networks with machines in them
and communication taking place between the individual machines. We are interested in
all communications which cross a firewall. And we are interested in the same kind of
abstraction as in the network layout: networks and servers, but not clients.

2Interestingly, some universities have their security policies on their webpages.

31

3.2. FORMAL POLICY CHAPTER 3. SPECIFICATION

POLICY = {RULE | COMMENT}
RULE = SOURCE ’→’ DEST : ACTION KEYWORDS
SOURCE = NETWORK
DEST = NETWORK
NETWORK = NAME
NAME = letter {letter | digit} .
ACTION = ’ACCEPT’ | ’DENY’ .
KEYWORDS = (’∗′ | NAME) {’,’ KEYWORDS}
COMMENT = ’@’ TEXT ’\n’
TEXT = {letter | digit ...}

Figure 3.4: Grammar for network policies

@ Connections to Private
DMZ → Private: ACCEPT securetraffic
Internet → Private: DENY ∗

@ Connections to the DMZ
∗ → Webserver: ACCEPT webtraffic
∗ → Mailserver: ACCEPT mailtraffic

@ Connections to the Internet
Private → Internet: ACCEPT ∗
DMZ → Internet: DENY ∗

Figure 3.5: A sample formal network policy

KEYWORD-DEFINITIONS = {DEFINITION | COMMENT}
DEFINITION = NAME ’=’ PROTO {’,’ PROTO}
NAME = letter {letter | digit} .
PROTO = letter {letter | ’-’ | ’+’ | digit | ’.’ | ’ ’} | NUM .
NUM = {digit} .
COMMENT = ’@’ TEXT ’\n’
TEXT = {letter | digit ...}

Figure 3.6: Grammar for keyword definitions

securetraffic = ssh, scp, https, imaps
webtraffic = http, https
mailtraffic = smtp, imap, imaps

Figure 3.7: Sample keyword definitions

32

CHAPTER 3. SPECIFICATION 3.3. SUMMARY

We need to be able to specify how a network or server is allowed to communicate
with another network or server. We do this by rules (RULE) that say who (SOURCE)
is allowed or denied (ACTION) what (KEYWORDS). Here the KEYWORDS stand for
a high-level category which can then be defined separately. This helps us achieve a high-
level, stable policy. The low-level details can be specified in the keyword definitions, which
may be changed frequently. These changes need not be made by the person writing the
policy (division of concerns).

The grammars for formal policy and keyword definitions are given in figures 3.4 and
3.6, respectively. Examples of their use (for the network in Figure 3.1) are given in figures
3.5 and 3.7, respectively.

Note that it depends on the testing level (packet or application level) how a protocol in
the keyword definitions is interpreted. If we test on the application level, ‘ssh’ really means
the ssh-protocol, whereas on the packet level we can only interpret ‘ssh’ as destination
port 22.

3.3 Summary

In this chapter we have presented formal languages for the specification of security policies,
network layouts, and keyword definitions. All the languages are simple on purpose. An
easy understandable language was more important to us than covering every special case.

Security policies, network layouts and keyword definitions are used as input to our
testing methodology, which is presented in chapter 4. We will see in chapter 5, that our
simple languages serve their intended purpose.

33

Chapter 4

Test Methodology

Recalling Figure 1.2, we want to generate test cases – for testing the conformance of
firewalls to a policy – from the following ingredients: a formal network policy, a network
layout and a keyword definition. After having introduced these in chapter 3, we now focus
on the main part, the test case generation.

4.1 Test Objectives

Before talking about how and what to test, we first discuss the reasons for conducting
tests and about the expected outcomes of such tests.

Roughly we can distinguish between the first test of a system before it is deployed
and consecutive retests after a changing of rules or policy or the substitution of a firewall
(software). What a test aims to show can be divided into three categories:

1. correct firewall implementation,

2. correct firewall specification (ruleset conforms to the policy),

3. resistance against attacks.

Resistance against attacks For the third category many tools [Aud06, GFi06, Sec06]
already exist that test aspects like vulnerability to known attacks, origin validation (no
spoofing possible), ways around the firewall (does traffic really has to pass the firewall)
and so on. As already stated in section 1.2, we will not cover this category. Instead
we recommend to use the existing methods for this kind of test complementary to our
method.

Correct firewall implementation The first category is normally tested by the firewall
vendors or by independent companies (see subsection 6.2.1). These tests consider timing,
behaviour under stress, logging and so on. As not every firewall undergoes such a test,
and as this is a really important point – the conformance of the ruleset to the policy is

35

4.2. THE SYSTEM UNDER TEST CHAPTER 4. TEST METHODOLOGY

worthless if the firewall implementation has a serious bug – we have decided to test the
firewall implementation as well.

Correct firewall specification And finally the second category: As this depends on
a policy, it cannot be tested once and for all. Rather it has to be tested individually
for every policy. Furthermore, it has to be retested after every change of a policy. This
is much work, but it is crucial to test this category as well. Companies rely on their
firewalls. A firewalls that is not doing its job correctly, represents a major security issue.
Unfortunately, to our knowledge, the only method for conformance-testing is handwork
by experts. Thus, due to the importance and the missing methods, our biggest interest
lies in this category.

Outcome of a test For each of these three categories, the the outcome of a test is
different: implementation, design or configuration errors. The effect of an attack is also
important. If the attack causes that no other traffic can pass the firewall (for some time)
this is a different problem than if all traffic is let through the firewall. In the first case, we
have denial of service (DoS). Not being able to do business, costs large amounts of money.
In the case of banks or international parcel services (like DHL), some hours or few days
will result in bankruptcy. In the second case, the problem is that everybody can enter a
network unhindered and compromise machines.

4.2 The System under Test

In this section we will elaborate on how a system under test looks like, before giving our
test methodology in the next section.

Alice

Bob

FW

Figure 4.1: System under test

Figure 4.1 shows a system under test. It consists of two networks, with one machine
each (Alice and Bob), and a firewall . All the traffic between Alice and Bob has to pass

36

CHAPTER 4. TEST METHODOLOGY 4.3. TEST CASE GENERATION

the firewall. The firewall’s job is to filter this traffic according to its rules (which should
implement the security policy).

High-level versus low-level view When testing such a system, there is a high-level
and a low-level view. Seen from a high-level, we simulate connections between Alice and
Bob. We want to determine if the firewall only allows policy conform connections. To
simulate a connection, we have to, at the low-level, simulate the endpoint automata. This
is reflected by taking two ingredients for our tests: test tuples telling us which connections
we have to test and how we expect the firewall to react, and abstract test cases which
simulate the endpoint automata for us — Actually we simulate the expected firewall
behaviour in a protocol run between two endpoints.

Questions answered When proceeding as described above, we answer the following
questions with our tests:

1. Are the protocol automata of the firewall correct1?

2. Are only connections allowed by the policy accepted by the firewall?

3. Are all connections allowed by the policy accepted by the firewall?

Question 1 solely depends on the firewall soft- / hardware used and needs to be an-
swered every time we encounter a new (version of a) firewall. To answer this question, we
need models of the relevant protocol automata. How to generate abstract test cases from
these is explained in subsection 4.3.1.

Questions 2 and 3 solely depend on the policy and need to be answered every time a
policy is created or changed. To achieve this, we generate test tuples from the policy and
use them to instantiate the abstract test cases. How test tuples are generated is shown in
subsection 4.3.2.

4.3 Test Case Generation (Technical Details)

An overview on the relation between the different concepts introduced in this section can
be found in Figure 4.2.

4.3.1 Abstract Test Cases

As described above, we use abstract test cases to determine if the protocol automata of
a firewall under test are correct. Recall that firewalls monitor the state of a connection
by internal automata (see section 2.4). We will call these automata midpoint protocol

1The protocol automata of a firewall are correct if they are equivalent to their specification. How these
specifications look like, is discussed in part II of this thesis.

37

4.3. TEST CASE GENERATION CHAPTER 4. TEST METHODOLOGY

abstract test cases

formal policy

test tuples
 (source IP, destination IP, protocol name, expectation)

concrete test cases

protocol specifications

Figure 4.2: Test ingredients

automata. In part II we will elaborate on why midpoint automata are different from
endpoint automata and how they look like. For the moment we just assume their existence.

To generate abstract test cases for a protocol p, a specification of a midpoint protocol
automaton for protocol p is needed. As the firewalls behave as Mealy machines — a packet
reaches the firewall (input) and is either forwarded (output) or dropped (no output) —
such a specification must be in the form of a Mealy machine. For the sake of simplicity
we will not consider modification — as with NAT — at the moment.

Starting from a specification, test cases can be generated using well-known methods.
These methods were introduced and evaluated in section 2.6. As already explained, we
chose the Wp-method, as it is the most widely applicable method with full fault coverage.

4.3.2 Test Tuples

A test tuple is a four-tuple (sIP , dIP , proto, exp), where sIP and dIP represent IP
addresses, proto is the name of a protocol, and exp ∈ {ACCEPT, DROP} represents an
expectation. Note that we do not consider other firewall actions, like sending ICMP error
codes. A test tuple describes whether a connection from the source sIP to the destination
dIP (direction matters) using protocol proto is allowed by the formal policy. If the policy
allows a connection, we expect the firewalls to let this data through, and therefore exp in
this case would be ACCEPT . If a connection is not allowed (or explicitly forbidden) by
the policy, exp will be DROP . Test tuples are policy-specific and thus must be generated
for every policy. Note that the statefulness of a connection is not modelled by these test
tuples, but rather by the abstract test cases.

Conversion to low-level rules We generate test tuples in two steps: first we convert
them to low-level rules, then we select test tuples. The first step works as follows. We
combine the formal policy with the low-level details contained in the keyword definitions
and the textual network layout. This means that we transform every rule

source → destination: action keyword

38

CHAPTER 4. TEST METHODOLOGY 4.3. TEST CASE GENERATION

Figure 4.3: Policy for https with test points

from the formal policy into n low-level rules, where n is the number of protocols contained
in keyword. In these low-level rules, the names of source and destination are replaced
with the corresponding IP ranges (sIPr and dIPr).

These low-level rules can be represented graphically using one two-dimensional graph
per protocol, where the x-axis represents the source IP addresses and the y-axis represents
the destination IP addresses. For each low-level rule

sIPr → dIPr: action protocol

the cross-product sIPr× dIPr defines a rectangular region in the graph. We colour this
region according to the given action: green for ACCEPT, red for DROP.

Implicit policy statements Until now, we just considered what the policy explicitly
states. But we should also test implicit statements, i.e. what is not explicitly allowed
is forbidden. This is best explained on the graphical representation. In the graph, we
coloured all the areas where we have an explicit policy statement (either in green or red).
This means that for all the yet uncoloured areas there exists no explicit policy statement.
Note that a part of these areas is not testable since, as we stated earlier, policies for
traffic within zones cannot be enforced by firewalls (this part is marked in yellow). The

39

4.3. TEST CASE GENERATION CHAPTER 4. TEST METHODOLOGY

remaining uncoloured areas can be partitioned into rectangles and then test tuples can be
chosen, analogous to the procedure given above, where the expectation is set to DROP.

Ambiguous policies Overlapping rectangular regions (from explicit policy statements)
mean that the policy is ambiguous . In such a case the testing process is stopped and a
warning is issued. This warning tells the policy engineer which rules interfere and how
they interfere. Based on this warning, a policy engineer can then remove the ambiguity
in the policy.

Test tuple selection The second step of our test tuple generation is the selection of
test tuples from the low-level rules. This is necessary because it is generally infeasible to
test every possible combination of IP addresses. However, as we assume uniformity within
zones, it is sufficient to choose for each low-level rule an arbitrary IP from the source IP
range and an arbitrary IP from the destination IP range. As boundary points are a source
of errors in practice, we also select addresses to test these. That is, we choose the lowest
IP address, an arbitrary (intermediate) IP address, and the highest IP address per range.
This results in nine (three times three) test tuples per low-level rule. An example (for
the formal policy in Figure 3.5, the network layout in Figure 3.3, the keyword definitions
in Figure 3.7 and the https protocol) is given in Figure 4.3. Note that taking special
addresses (e.g. private networks and broadcast) into account is left for future work.

4.3.3 Concrete Test Cases

In the last two sections, we have explained the generation of test tuples and abstract
test cases. Recall that abstract test cases test the correct stateful handling of a protocol,
and they contain variables for source and destination addresses (A and B respectively).
Recall further that test tuples are of the form (sIP, dIP, proto, exp), formalising whether
a connection from the IP address sIP to the IP address dIP using protocol proto is allowed
by the policy or not. We now explain how to instantiate the abstract test cases with the
test tuples. The resulting concrete test cases then can be used to test whether the policy
is correctly implemented in a stateful manner.

Instantiation Given a test tuple (sIP, dIP, proto, exp) and abstract test cases ai for
the protocol proto, the instantiation proceeds as follows:

• replace every occurrence of A in every ai with sIP,

• replace every occurrence of B in every ai with dIP, and

• if exp equals DENY then replace the expected output in every ai with “–”.

The resulting test data represent network packets. These packets can then be built and
injected into the actual network and the results (the answer of the firewall to the packets)
can be compared to the expectations of the given test cases. Refer to section 5.1 for a
description of fwtest which we implemented for this purpose.

40

CHAPTER 4. TEST METHODOLOGY 4.3. TEST CASE GENERATION

Two-stage test As already stated in section 2.6, we must assume that the midpoint
protocol automata do not change during the test. If the midpoint automata would change,
we could make no statement at all about their correctness (at a certain point in time).
Using the above assumption, we do not need to test the protocol automaton for every test
tuple. Instead we divide our tests in two stages:

1. test the midpoint protocol automata, and

2. test the conformance to the policy.

For the first stage, we only take a few accepting test tuples per protocol to instantiate
the abstract test cases. If the midpoint automaton does not change during the test, the
test outcome regarding the midpoint automaton should be the same for all test tuples.
Therefore one test tuple is enough. Taking some more, helps minimising environmental
influences and the possibility of taking a test tuple with a wrong expectation.

For the second stage, we instantiate a run-through (shortest path from the start state
to the end state of the midpoint automaton) of the protocol with the test tuples. This
is enough as we only have to distinguish between accept and drop in this stage. If the
midpoint automaton is correct – which is determined by stage one – it will either accept
all possible run-throughs or none. Therefore one run-through is enough to decide.

Using this two-stage testing yields less test cases without loosing accuracy: As stated
above, the midpoint automaton is either always correct or never. Further, the two-stage
procedure enables us to only run one stage of the test at a time: if we have a new firewall
(version) we only run the first stage of the test, whereas if we changed the policy or the
firewall ruleset we only run the second stage of the test. Running both stages will only
be required the first time a firewall setup is tested.

If both testing stages are successful, it can be assumed that the firewall (configuration
and implementation) under test is working correctly. For the practitioner this is satisfying.
But we should never forget about Dijkstras famous saying “Program testing can be used
to show the presence of bugs, but never to show their absence!”[Dij70].

4.3.4 Remarks

Until now we were abstracting from the differences between packet level and application
level. In this section we want to give some level-specific remarks to extend the general
explanations given above.

For the rest of this thesis we will then restrict ourselves to the packet level. More
precisely, we will just look at TCP from now on. But as UDP (stateless) is much simpler
than TCP (stateful), all the results can be applied to UDP as well. This has the following
reason: The application level builds on the packet level. Thus we first have to understand
the packet level, before being able to work at the application level.

Packet Level (TCP)
On the packet level we only need abstract test cases for TCP and UDP. Thus, instead

41

4.3. TEST CASE GENERATION CHAPTER 4. TEST METHODOLOGY

of instantiating the abstract test cases generated for proto with test tuples of the form
(sIP, dIP, proto, exp), we instantiate the abstract test cases for TCP with these tuples.
To model proto at the TCP-level, we use the TCP port-number pnum of proto as the
destination port. Thus, B in the abstract test cases is replaced with dIP:pnum (instead of
dIP) in this case, to produce the concrete test cases. Note that we do not take sequence
numbers, timing, and fragments into account. An example looks as follows:

an abstract test case:

(rst: A → B / rst: A → B)
(fin: A → B / -)
(syn & ack: B → A / -)
(syn: A → B / syn: A → B)

a test tuple: (1.1.1.2, 3.3.3.0, https, ACCEPT)

the resulting concrete
test case:

(rst: 1.1.1.2 → 3.3.3.0:443 / rst 1.1.1.2 → 3.3.3.0:443)
(fin: 1.1.1.2 → 3.3.3.0:443 / –)
(syn & ack: 3.3.3.0:443 → 1.1.1.2 / –)
(syn: 1.1.1.2 → 3.3.3.0:443 / syn: 1.1.1.2 → 3.3.3.0:443)

In this example, the abstract test case simulates one part of the TCP protocol. Four
packets need to be sent: a packet with the RST-flag set from A to B, a packet with the
FIN-flag set from A to B, a packet with the SYN- and ACK-flag set from B to A and
a packet with the SYN-flag set from A to B. To correctly handle the TCP protocol, the
firewall has to block the second and third packet in any case. The test tuple states that
a https-connection between the IPs 1.1.1.2 and 3.3.3.0 must be accepted by the firewall.
Instantiating the abstract test case with these values, as described above, results in the
network packets we can use to test this statement.

Application Level
With application level firewalls, the problem becomes far more complex. To answer the
questions given in the introduction, application data has to be taken into account addi-
tionally. I.e. instead of answering the question Are http connections from A to B able
to pass the firewall? we now have to answer the question Are connections from A to B
not containing the words x,y,z able to pass the firewall?. Additionally, http really
means the http-protocol, not port 80. I.e. we are interested if http is able to pass, not if
anything on port 80 is able to pass.

To master the complexity, we need additional specifications for at least the following:
1) contents, their possible values, and their ordering (payload), and 2) the interaction
between different protocols.

Another fact we have to keep in mind is that we only can test the correct handling of
an application level protocol if it is unencrypted. If for example IPSEC is used, we can

42

CHAPTER 4. TEST METHODOLOGY 4.4. PRACTICAL CONSIDERATIONS

only check the correct initialisation of IPSEC. And if the policy states that all connec-
tions between A and B need to be encrypted, we can test this additionally by sending
unencrypted data.

Thus, to be able to test application level firewalls, we need to adapt our policy such
that statements about contents of and interaction between protocols are possible. Also we
need a way to describe the packet structure of a protocol, in order to correctly generate
test packets. As stated above, the solution of these questions is beyond the scope of this
thesis.

4.4 Practical Considerations

Preset test cases are easier to construct than adaptive ones (for a definition please refer
to subsection 2.6.3). However, in our setting, certain values cannot be determined in
advance. The correct acknowledgement number of a packet, for example, is known only
at the time the packet is sent, because it depends on which previous packets reached their
destination.

We decided to take the best of both approaches: We pregenerate the test cases as far
as possible (preset). The missing information – sequence and acknowledgement numbers
for all test cases, and ports and IPs in the case of NAT – is then completed during the
test (adaptive).

4.5 Summary

When generating test cases we basically need to take two things into account: the policy
they have to represent and the protocol specifications of the used protocols. As protocol
specifications do not change, but policies do, we use a two-phase generation.

In the first phase, abstract test cases are generated for every protocol (if not already
present) on the one hand and test tuples are generated for the policy on the other hand.
The abstract test cases for a protocol represent correct (and incorrect) runs of that pro-
tocol. They only need to be generated once per protocol. The test tuples represent the
policy in the form of connections to be tested and thus need to be (partially) regenerated
after every change of the policy.

Instantiating the abstract test cases with the test tuples in the second phase yields
concrete test cases. These concrete test cases specify test packets that can directly be fed
into the network to test if the policy is implemented correctly by the firewalls.

To minimise testing efforts, we can restrict ourselves to testing only the stage needed:

• Testing the midpoint protocol automaton of a firewall – by instantiating the abstract
test cases with only a few accepting test tuples – after a change of the firewall
(software).

43

4.5. SUMMARY CHAPTER 4. TEST METHODOLOGY

• Testing the conformance to the policy – by instantiating only a run-through of the
protocol with the test tuples – after a change of the policy, keyword definitions,
network layout or firewall rules.

Note that these two stages of test execution are not the same as the two phases of the
test generation.

If the outcome of a test is not as expected, this can have one or several of the following
causes: incorrect firewall rules, an incorrect firewall implementation, a bug in our tool, or
different network problems. Searching the cause of an unexpected test outcome has to be
done by hand. This is due to the fact that we treat firewalls as black boxes, thus cannot
search for errors in their rules.

44

Chapter 5

Validation

In section 1.2 we stated our thesis as follows: It is possible to construct a method for
the specification-based testing of firewalls, whose resulting test-cases can be used to test
whether a specific installation satisfies the stated policy. In this chapter we validate this
thesis.

This chapter is organised as follows: First, we explain our prototype tool suite which
we implemented for the purpose of validation. Then we give a small example presenting
how to conduct a whole test run, before we end with a real-world case study.

5.1 Tools

With the help of students we have implemented an essential part of our research in a
prototype test harness. Figure 5.1 gives an overview of the various tools and their relation
to each other. Note that we do not have an implementation for the test tuple generation.
For the example test run in the next section and the case study in section 5.3, the test
tuple generation is done by hand.

NetMap As explained in section 3.1, we need to know the network under test in order to
generate test cases. This network layout can be graphically specified in NetMap, written
by Markus Frauenfelder [Fra05], and then be converted to a textual representation needed
for the generation. Additionally the conversion works in the other direction (textual to
graphical) as well. Unfortunately the handling of the tool is not very intuitive. While this
is not a problem for a prototype tool, this is definitely not desired in an industrial-strength
tool.

End-Mid.lhs This is the implementation (see Appendix B for the code) of Part II
of this thesis in Haskell. By entering the specification of an endpoint automaton, the
corresponding midpoint automaton can be derived on a step-by-step basis. The resulting

45

5.1. TOOLS CHAPTER 5. VALIDATION

formal policy keyword definition graphical network layout

fwtest

NetMap

(by hand)

End-Mid.lhs

TCGTool

endpoint protocol automaton

 midpoint protocol automaton

test tuples

gen-conc-test

concrete test cases

Result

gen-abs-test

abstract test cases

textual network layout

Figure 5.1: Our tools – the big picture

midpoint automaton then needs to be minimised1 before it can be entered (graphically)
into the TCGTool.

TCGTool The TCGTool (TCG standing for Test Case Generation) is an extension of
JFLAP [RF] written by Stefan Hildenbrand [Hil05]. The TCGTool can generate abstract
test cases for protocols: protocols can be specified graphically in the form of Mealy ma-
chines. The alphabet being used can be defined by the user. Using the Wp-Method
described in section 2.6, abstract test cases are generated within seconds.

Even if there are some shortcomings (e.g. the tool only works with minimised au-
tomata), this tool represents an extraordinary work. Also, it is the first such tool which
is freely available2

1Neglecting the triples of states (see section 9.2), i.e. only considering their incoming and outgoing
transitions, we get a lot of equivalent states that can be merged.

2With the agreement of the JFLAP authors, we put the TCGTool under the GPL. Also with the hope
that others in the field will invest their time in extending it instead of inventing the wheel once more
(there already existed such a tool – see http://www.site.uottawa.ca/∼ural/tsg/ – but unfortunately
it was not available for use). Somebody who wanted to invent the wheel once more, and is now using and
extending our tool, is Dr. Mark Utting from the University of Waikato, New Zealand.

46

http://www.site.uottawa.ca/~ural/tsg/

CHAPTER 5. VALIDATION 5.1. TOOLS

gen-abs-test gen-abs-test is a small compiler that converts the output of the TCG-
Tool (test cases and alphabet) to abstract test cases in fwtest’s input format. These test
cases contain variables for IPs and ports.

gen-conc-test gen-conc-test is a small compiler that uses given test tuples to instan-
tiate the abstract test cases generated by gen-abs-test. The resulting concrete test cases
can then directly be used with fwtest.

fwtest The first version of fwtest was written by Gerry Zaugg in his diploma thesis
[Zau04]. This initial version (0.5) of fwtest was able to craft, inject, capture and analyse
predefined test packets as shown3 in Figure 5.2. The tool was written with TCP and UDP
in mind, but at that time only TCP was supported.

firewall

1. generation

2. injection
3. interception

4. analysis

fwtest fwtest

Figure 5.2: fwtest v0.5

firewall

1. generation

2. injection 3. interception

4. analysis

fwtest

Figure 5.3: fwtest v1.0

Fwtest was extended (v1.0) by Beat Strasser [Str06] and Adrian Schüpbach [Sch06] to
support UDP, ICMP and NATting. The test is now conducted by a single test instance
(see Figure 5.3) instead of two.

Analysis of the Result As we are treating firewalls as black boxes, the cause of an
unexpected test outcome has to be searched by hand with the help of the fwtest log-files.

3While there is only an unidirectional flow shown, fwtest works bidirectional.

47

5.2. AN EXAMPLE TEST RUN CHAPTER 5. VALIDATION

5.2 An Example Test Run

In this section we demonstrate, step by step, a complete test run with the help of a simple
example.

5.2.1 Policy

Our formal policy, network layout and keyword definitions can be found in Figures 5.4,
5.5, and 5.6.

@ Connections to the Intranet
DMZ → Intranet: DENY ∗

@ Connections to the DMZ
∗ → Webserver: ACCEPT webtraffic
∗ → Mailserver: ACCEPT mailtraffic

Figure 5.4: Demo – formal policy

DMZ: 172.16.0.0/16
Intranet: 192.168.0.0/16

∗ ∗ ∗
@ Name of the Firewall Interface Network behind Properties
charly eth0 (172.16.70.3) DMZ Packet filter
charly eth1 (192.168.72.3) Intranet Packet filter

∗ ∗ ∗
@ Name (fac.) IP Service
Mailserver 172.16.70.5 smtp
Mailserver 172.16.70.5 imap
Mailserver 172.16.70.5 imaps
Webserver 172.16.70.4 http
Webserver 172.16.70.4 https

Figure 5.5: Demo – network layout

webtraffic = http, https
mailtraffic = smtp, imap, imaps

Figure 5.6: Keyword definitions

5.2.2 Setup

To do firewall testing we need at least two machines: a firewall and a tester. These are
connected as given in Figure 5.7.

48

CHAPTER 5. VALIDATION 5.2. AN EXAMPLE TEST RUN

firewall

eth0
192.168.72.2

 eth1
 172.16.70.2

 eth1
 172.16.70.3

eth0
192.168.72.3

Figure 5.7: Network setup

Firewall-Setup

For the firewall we choose a Checkpoint product, which we configure as follows:

• Install Checkpoint R55W

• configure the interfaces

– eth0 192.168.72.2

– eth1 172.16.70.2

• define hosts and networks

– Intranet 192.168.0.0 255.255.0.0

– DMZ 172.16.0.0 255.255.0.0

– Webserver 172.16.70.4

– Mailserver 172.16.70.5

– alice 192.168.72.3

– bob 172.16.70.3

• write the rules (Figure 5.8)

• install the rules

Tester-Setup

On the tester we need at least fwtest installed. If we want to generate our test cases on the
tester, we need to install all the other tools – TCGTool, gen-abs-test, and gen-conc-test
– as well.

49

5.2. AN EXAMPLE TEST RUN CHAPTER 5. VALIDATION

Figure 5.8: Firewall rules

Configure the interfaces:

ifconfig eth0 down

ifconfig eth1 down

ifconfig eth0 192.168.72.3

ifconfig eth1 172.16.70.3

route add -net 192.168.0.0/16 gw 192.168.72.2

route add -net 172.16.0.0/16 gw 172.16.70.2

5.2.3 Test Case Generation

Generation of test tuples

The test tuple generation, as of subsection 4.3.2, was done by hand. It resulted in 75 test
tuples (Small Example.diana):

(172.16.0.0, 192.168.0.0, http, DROP)

(172.16.70.2, 192.168.0.0, http, DROP)

(172.16.255.255, 192.168.0.0, http, DROP)

[..]

(192.168.0.0, 172.16.70.4, https, ACCEPT)

[..]

50

CHAPTER 5. VALIDATION 5.2. AN EXAMPLE TEST RUN

Figure 5.9: TCGTool – The form of a TCP packet

Generation of abstract test cases

We begin with drawing the TCP automaton of Checkpoint R55W in the TCGTool:

< dsenn@gin > java-1.4.2 -jar TCGTool.jar

We first have to define the fields of a TCP packet4 (Figure 5.9 – TCP.alpha.tcg), before
we can specify the individual packets (Figure 5.10). Then we can draw the TCP automa-
ton of Checkpoint R55W (Figure 8.5 – Figure 5.11 – TCP CheckpointR55W.mm.tcg). To
generate the abstract test cases, we choose test case generation → Wp-method from
the menu. The resulting abstract test cases look as follows, where every line represents a
test case, and each (input/expected output)-tuple represents a test packet.

(SYN_A_B/SYN_A_B)(FINACK_A_B/FINACK_A_B)(SYN_A_B/SYN_A_B)

(SYN_A_B/SYN_A_B)(SYNACK_B_A/SYNACK_B_A)(ACK_A_B/ACK_A_B)[..]

(SYN_A_B/SYN_A_B)(ACK_A_B/ACK_A_B)(ACK_B_A/-)

[..]

These abstract test cases then need to be converted to the fwtest-format:

< dsenn@gin > ./gen-abs-test TCP_CheckpointR55W.tests.tcg TCP.alpha.tcg \

TCP_CheckpointR55W.tp

testcase 1 {

packet 1 { TCP send {ipB ipA portB portA R 222 -} receive ?}

packet 6 { TCP send {ipA ipB portA portB S 1 -} receive ok}

packet 7 { TCP send {ipA ipB portA portB FA 1 1} receive ok}

4At the moment we are only interested in header fields.

51

5.2. AN EXAMPLE TEST RUN CHAPTER 5. VALIDATION

Figure 5.10: TCGTool – The different TCP packets

Figure 5.11: TCGTool – TCP automaton in Checkpoint R55W

52

CHAPTER 5. VALIDATION 5.2. AN EXAMPLE TEST RUN

packet 8 { TCP send {ipA ipB portA portB S 1 -} receive ok}

}

testcase 2 {

packet 9 { TCP send {ipB ipA portB portA R 222 -} receive ?}

packet 14 { TCP send {ipA ipB portA portB S 2 -} receive ok}

packet 15 { TCP send {ipB ipA portB portA SA 1 3} receive ok}

packet 16 { TCP send {ipA ipB portA portB A 3 2} receive ok}

packet 17 { TCP send {ipA ipB portA portB FA 4 2} receive ok}

packet 18 { TCP send {ipA ipB portA portB R 5 -} receive ok}

packet 19 { TCP send {ipA ipB portA portB SA 6 2} receive {}}

}

[..]

Note that every testcase represents one line and every packet represents one (send/
receive)-tuple from above.

Generation of concrete test cases

For this example we only run the second testing-stage: conformance to the policy.

< dsenn@gin > ./gen-conc-test TCP_Simple.tp Small_Example.diana \

Small_Example_simple_diana.tp

The concrete test cases for the second testing-stage (Small Example simple diana.tp)
look as follows:
testcase 1 {

packet 1 { TCP send {192.168.0.0 172.16.0.0 http 1025 R 222 -}

receive ?}

packet 6 { TCP send {172.16.0.0 192.168.0.0 1025 http S 2 -}

receive {}}

packet 7 { TCP send {192.168.0.0 172.16.0.0 http 1025 SA 1 3}

receive {}}

packet 8 { TCP send {172.16.0.0 192.168.0.0 1025 http A 3 2}

receive {}}

packet 9 { TCP send {172.16.0.0 192.168.0.0 1025 http FA 4 2}

receive {}}

packet 10 { TCP send {192.168.0.0 172.16.0.0 http 1025 FA 5 -}

receive {}}

}

testcase 2 {

packet 1 { TCP send {192.168.0.0 172.16.70.2 http 1025 R 222 -}

receive ?}

packet 6 { TCP send {172.16.70.2 192.168.0.0 1025 http S 2 -}

receive {}}

packet 7 { TCP send {192.168.0.0 172.16.70.2 http 1025 SA 1 3}

53

5.2. AN EXAMPLE TEST RUN CHAPTER 5. VALIDATION

receive {}}

packet 8 { TCP send {172.16.70.2 192.168.0.0 1025 http A 3 2}

receive {}}

packet 9 { TCP send {172.16.70.2 192.168.0.0 1025 http FA 4 2}

receive {}}

packet 10 { TCP send {192.168.0.0 172.16.70.2 http 1025 FA 5 -}

receive {}}

}

Here we can clearly see the instantiation of the abstract test cases with a test tuple. For
example portB from above has been replaced by http.

5.2.4 Execution

The concrete test cases, generated in the last section, can directly be fed into fwtest.
Following the instructions in the fwtest-README the following steps are needed:

1. Ping the firewall from the tester:

< dsenn@gin > ping -c 1 192.168.72.2

< dsenn@gin > ping -c 1 172.16.70.2

Note that this should either be allowed by the rules, as in our case, or be done
before the policy is in place. Alternatively, the MAC-Addresses corresponding to
the pinged IPs could be set by hand.

2. Install the policy on the firewall (if not already done).

3. Run fwtest on the tester:

< dsenn@gin > ./run_fwtest.sh Small_Example_simple_diana.tp \

Small_Example_simple_diana_20060912.log 192.168.0.0/16 eth0 \

172.16.0.0/16 eth1

If we now examine the log-file, we see a number of false positives and false negatives,
which can be divided into the following categories:

• 46 - 48: 192.168.x.x → 172.16.70.4 http ok

• 49 - 51: 192.168.x.x → 172.16.70.4 https ok

• 55 - 57: 192.168.x.x → 172.16.70.4 imap nok

• 67 - 69: 192.168.x.x → 172.16.70.5 imaps ok

54

CHAPTER 5. VALIDATION 5.2. AN EXAMPLE TEST RUN

Figure 5.12: Firewall rules – improved version

For 46 - 48, 49 - 51, and 67 - 69 all packets have been blocked instead of passed. For 55 -
57 all packets were passed instead of blocked.

Comparing the ruleset (Figure 5.8) to the policy (Figure 5.4) with the above findings in
mind, we see that rule 1 is wrong. We therefore change its destination to “Mailserver” and
add a rule for the “Webserver”. This yields the ruleset in figure 5.12. We now run our tests
again and obtain the following log-file (Small Example simple diana 20060912 3.log):

Fwtest v1.0 [Firewall Testing Tool]

10/05/2006 11:40:14.841064

Timeout between time slots: 1 second(s)

[time] [type] [id] [packet]

#

11:41:18.601734 false_pos 69.46 --

11:41:18.601891 false_pos 68.46 --

11:41:18.602039 false_pos 67.46 --

11:41:19.614018 false_pos 69.47 --

11:41:19.614168 false_pos 68.47 --

11:41:19.614316 false_pos 67.47 --

11:41:20.621963 false_pos 69.48 --

11:41:20.622114 false_pos 68.48 --

55

5.3. ARMASUISSE CASE STUDY CHAPTER 5. VALIDATION

11:41:20.622262 false_pos 67.48 --

11:41:21.634112 false_pos 69.49 --

11:41:21.634263 false_pos 68.49 --

11:41:21.634411 false_pos 67.49 --

11:41:22.654111 false_pos 69.50 --

11:41:22.654259 false_pos 68.50 --

11:41:22.654407 false_pos 67.50 --

The only entries left are:

• 67 - 69: 192.168.x.x → 172.16.70.5 imaps

These reveal a problem of the firewall used: Checkpoint R55W does not seem to know
imaps. The elimination of this problem is a task for the security officer and the firewall
administrator.

5.2.5 Summary

In this section, the use of our tools for specification-based firewall testing has been shown
at a small example. The specification of policy, network layout and keyword definitions
was straightforward. The test case generation worked well and the resulting concrete
test cases were able to reveal errors in the firewall configuration. This means that our
approach works in principle.

In the next section, we will now apply our approach to a real-world setting: the firewall
which separates the armasuisse “Wissenschaft und Technologie” department from the rest
of the world.

5.3 Armasuisse Case Study

5.3.1 Specification

The policy was derived in a two-step process. First, we reverse-engineered it from the
comments in the firewall rules. Then Jürg Gertsch from armasuisse made some small
corrections.

Network Layout

Note that the real IP addresses have been replaced by private ones for confidentiality
reasons.

56

CHAPTER 5. VALIDATION 5.3. ARMASUISSE CASE STUDY

INET
LAN

ADMIN

 eth0eth1

 eth2 FILE_SERVER

TRH_SERVER

PRINT_SERVER

WIKI_SERVER

XP_IP_RANGE
XP_IP_RANGE1
XP_IP_RANGE2
XP_IP_RANGE3
JMA_CLIENT
TRH_CLIENT
SAP_IP_RANGE
NOTALLOWED1
NOTALLOWED2

192.168.2.1

10.20.30.1

LAN: 10.20.30.0/24
XP IP RANGE: 10.20.24.0/23
XP IP RANGE1: 10.20.51.0/24
XP IP RANGE2: 10.20.48.0/23
XP IP RANGE3: 10.20.60.0/23
TRH CLIENT: 10.20.99.0/24
SAP IP RANGE: 192.168.66.0/24
NOTALLOWED1: 192.168.33.0/24
NOTALLOWED2: 172.20.13.0/24
INET: XP IP RANGE, XP IP RANGE1, XP IP RANGE2,

XP IP RANGE3, TRH CLIENT, SAP IP RANGE,
NOTALLOWED1, NOTALLOWED2

**
@ Name of the Firewall Interface Network behind Properties
FW eth0 (-) LAN Bridge
FW eth1 (-) INET Bridge
FW eth2 (192.168.2.1) ADMIN

**
@ Name IP Service
FILE SERVER 10.20.30.11
PRINT SERVER 10.20.30.16
TRH SERVER 10.20.30.26
WIKI SERVER 10.20.30.45
LAN BCAST 10.20.30.255
JMA CLIENT 10.20.71.60
SCANNER0 172.100.200.19
SCANNER1 172.100.100.97
SCANNER2 10.33.0.99

57

5.3. ARMASUISSE CASE STUDY CHAPTER 5. VALIDATION

Formal Policy

@ Connections to ADMIN

@ Connections to LAN
* → LAN-BROADCAST DROP *
XP IP RANGE1-3 → FILE SERVER ACCEPT xxx, web
JMA CLIENT → FILE SERVER ACCEPT data, xxx
* → PRINT SERVER ACCEPT control
SAP IP RANGE → PRINT SERVER ACCEPT print
TRH CLIENT → TRH SERVER ACCEPT xxx
* → WIKI SERVER ACCEPT web, sec-web
XP IP RANGE → LAN ACCEPT *
SCANNER0-2 → LAN DROP *

@ Connections to INET
LAN → !NOTALLOWED ACCEPT *

@ OTHER
ADMIN → FW ACCEPT *

Keyword Definitions

data = ftp

xxx = NetBios

web = http

sec-web = https

print = printer

control = icmp

5.3.2 Test Case Generation

We have generated the test tuples by hand. As boundary points for a \24-network,
we used .2 and .254. The resulting test tuples can be found in Appendix A. These
test tuples were used to instantiate the abstract test cases for a single TCP connection
initiation followed by a connection tear-down (TCP simple.tp), to get the concrete test
cases (armasuisse simple.tp).

We only did a check of the policy, but no check of the firewall. The justification for
this is that we could not run our tests on the real hardware but only on a copy. Therefore
we would have found bugs only in the implementation of our firewall, but not in the real
one. As we already know how the automaton of our firewall looks like – see Figure 8.4 in
section 8.2 – checking it again made no sense.

58

CHAPTER 5. VALIDATION 5.3. ARMASUISSE CASE STUDY

5.3.3 Test Execution

As we could not run our tests in armasuisse’s productive environment, we duplicated the
environment using VMware, which we used for our tests.

As fwtest, at the moment, is not able to simulate more than one network per side,
we had to run one test per network contained in the Internet. Overall, all test cases run
through without false positives (a packet we expected did not arrive) or false negatives (a
packet that should have been dropped by the firewall, arrived at its destination).

5.3.4 Conclusion and Future Work

To summarise, there is good and bad news. The good news is that our approach passed
the test and did work in a real-life scenario. The bad news is that the tool-support needs
many improvements before it can be used by a normal user. As we were only interested in
a proof of concept, rather than an industrial-strength tool, we leave them as future work.
Apart from GUIs, the following problems and questions need to be fixed and answered,
respectively.

[specification] How to specify connections to the firewall? When designing our
policy language we decided that a policy should talk about communication between net-
works. Unfortunately we forgot one special case: if the firewall configuration does not
take place at the machine itself (physically), communication between the administration
machine and the firewall needs to be allowed (remote). Thus the formal policy and the
test tuple generation need to be adapted.

[TCGTool] Where is the error? The Wp-method, used for test generation, expects
completely specified, minimal automata with a fixed start state, where every state is
reachable. At the moment these requirements are not checked by the TCGTool. This
results in stack overflows if an automaton does not fulfil the requirements. Two improve-
ments are needed here: First, we need error handling which consists of finding the source
of the error. Second, we need a method for the automatic minimisation of a given Mealy
machine.

[test tuples] Automation We have shown that our method works and does help in
finding errors. To reduce the amount of time needed, and errors introduced by humans,
the test tuple generation should be automated.

[test tuples] Traceability For the analysis of test logs it is important to know from
which policy rule a test tuple was generated. This knowledge should finally end as a
comment in the executed test packets file.

59

5.3. ARMASUISSE CASE STUDY CHAPTER 5. VALIDATION

[test tuples] Which are the boundaries of the network? Recall that we choose
9 test cases per graph-region. For this choice, specialised network knowledge need to be
taken into account. Choosing .0 as IP-address is of no help, as it represents the network
itself. Care has to be taken with .255 and .1: .255 represents broadcast, and .1 often is
a router. Finally, private IP addresses can be used multiple times and are not routed in
the Internet.

[abs to conc2] Support for UDP and ICMP are needed. At the moment the
instantiation of abstract test cases with test tuples only works for TCP. Support for UDP
and ICMP is needed. But to distinguish xxx over TCP from xxx over UDP, the keyword
definitions have to be adapted.

[fwtest] What if the firewall is a bridge? Fwtest assumes the firewall interfaces to
have an IP. It uses this IP to lookup the MAC addresses of the firewall interfaces, where
it sends the packets to. If the firewall acts as a bridge – the routing may be done by
a separate router on one side of the firewall – it does not have IPs. Although this is a
special case, we need a solution for it.

[fwtest] Support for more than one net on one side. When running fwtest, we
need to tell it which networks it should simulate on either side. Unfortunately, at the
moment this can only be one network per side. But, for example, the Internet consists of
many different networks. It would be nice if this could be tested in one run, instead of
many runs (one per network) as it has to be done now.

[fwtest] It also needs to work with 200 packets at one timeslot. We tried to run
approximately 200 of our test cases at the same time. Unfortunately it seems that 200
test cases per timeslot asks too much of fwtest. We saw output of the form

IP-ID (TCP/UDP): expected ID=436, received ID=69

IP-ID (TCP/UDP): expected ID=430, received ID=69

and all the test packets were logged as false positives despite their arrival. This issue
should definitely be resolved. We need to be able to parallelise our tests.

60

Chapter 6

Related Work

The definitions of terms used in this chapter can be found in chapter 2.

6.1 Security Policy

[BCG+01] presents very similar ideas to ours. It is not clear if there is more than just
ideas. Their approach relies on the help of device vendors. We doubt that device vendors
will supply models for new devices and make existing devices confirm to standards.

A Language for Security Constraints on Objects (LaSCO) is defined in [HPL98]. The
authors use it to nicely graph Access Control Constraints (Security Policies for Access
Control) but claim that it could also be used for security policies. We doubt that LaSCO
is suitable for network security policies. With firewalls we, for example, need to be able
to express that an event A has to happen before a B can happen. This is not expressible
in LaSCO.

There exist guidelines [Gro97, SAN] on how to write a security policy, on security
services, security incident handling, et cetera. These discuss informal policies and are
intended as a guideline for system administrators and as information for management.
These guidelines helped us to identify some demands to a security policy, which we needed
during the design of our formal policy language.

6.2 Firewalls

6.2.1 Product Testing

Most people, and all firewall testing methods working at rule-level, rely on the correctness
of the firewall implementation. There are several companies conducting intensive tests to
ensure this correctness. ICSA Labs1 describe their tests in [Wal04]. All the bugs they
find during their tests, show that it is not safe to rely on the correctness of a firewall.

1formerly known as the International Computer Security Association

61

6.2. FIREWALLS CHAPTER 6. RELATED WORK

This justifies our decision to conduct our tests at the network level. Further, the ICSA
white paper confirms our findings with respect to different firewalls having different TCP
automata: “What has been permitted through firewalls prior to session establishment has
varied greatly depending on just how much attention the firewall is paying to the TCP
header during connection establishment.”

6.2.2 Penetration Testing

Penetration testing [Sch96, WTS03] is the state of the art in firewall testing. While probing
a firewall for known attacks definitively should have a place in the whole testing process
(see section 4.1), it should not be the only test conducted. The usage of penetration testing
as a ’tool’ in fully manual conformance testing2 includes too much interpretation work
(and work in general). Due to this, and the ever growing complexity of systems, it should
definitely be replaced with a (semi-)automated method based on a clear specification. We
see this field partially (probing for known attacks) as complement to our method and
partially (manual conformance testing) as predecessor of our work.

6.2.3 Analysis and Simulation

[FKSF01, KFS+03] analyse existing firewall vulnerabilities. The authors first define dif-
ferent stages of packet traversal in firewalls. These stages are then analysed, which results
in a classification of the types of occurring errors and vulnerabilities. The authors claim
that the knowledge about known vulnerabilities can help to develop an intuition about
which errors a firewall operation is most vulnerable to. This approach is orthogonal to
ours as we consider firewalls to be black-boxes.

The most mature work in this category is a series of tools by Wool et al. The
tools named Firmato [BMNW99, BMNW03], Fang [MWZ00] and FA (earlier called LFA:
Lumeta Firewall Analyzer) [Woo01] represent the evolution from a prototype tool to one
that is being sold [MWZ05]. The idea behind FA is that the user only has to say where
his firewall configuration files lie. FA then automatically translates the rulebases into an
intermediate format and automatically retrieves the network layout from the firewall rout-
ing tables. Then all possible connections are analysed and the output is given in HTML.
For an expert user this might be interesting, as he can really see in detail which services
are allowed between which endpoints (this is difficult with most of today’s firewalls as
much information is hidden in options and behind service names). What the user is also
shown is whether he uses services known to be insecure. This approach is a big help for
firewall administrators to give them an overview on their firewall rules and possible secu-
rity implications. Unfortunately, the difficult part of determining if these rules conform
to the policy is completely left to the firewall administrator.

2Manual conformance testing: Humans using tools to find out what is able to pass a firewall and then
manually checking (very time intensive) if that is what should happen.

62

CHAPTER 6. RELATED WORK 6.2. FIREWALLS

Another white-box approach at the rule-level is [ASH03]. There the connection be-
tween different firewall rules (completely disjoint, exactly matches, inclusively matches,
partially matches, are correlated) is analysed. This helps to find errors caused by over-
lapping rules, and to insert new rules at the correct place. This approach has the same
shortcomings as all on this level have: First, it only works for firewalls whose rule lan-
guages it knows, and second, implementation errors cannot be found. Also this approach
does not take into account whether the rules express what they should. Therefore, this
approach does not solve our problem, but could be used complementary to ours.

Two other, simple approaches are [EZ01] and [Haz00]. There the user can issue ques-
tions regarding his firewall rules, e.g. “which services does IP X offer (to whom)?”, which
the tool will then answer. The problems with these two approaches are on one hand that
they only know Cisco Access Lists and on the other hand that they are only as good as
the person using it (i.e. issuing the questions). Note that this is not true for our approach:
We also test implicit policy statements (i.e. what is not explicitly stated).

6.2.4 Formal Testing

There are not many formal approaches to firewall testing yet.
A paper claiming to do formal firewall testing is [JW01]. Unfortunately the really

important questions, for example how to formulate test case specifications, are not at all
tackled.

Another work claiming to do specification-based firewall testing is [Ma04]. What the
author sees as specification-based testing – to answer certain questions with the help of
the firewall ruleset (which is the specification in her case) – can in our point of view not be
called specification-based testing. Specification-based testing means comparing something
to a specification, but here there is no comparison at all. The biggest challenge for her is
to answer the test queries. The real challenge in our experience, namely how to find the
right queries, is not addressed at all.

6.2.5 Other related work

What does the best firewall solution help if your CIO does not think it is needed? [Gro97]
explains in an easy to understand way why protection is needed, why security policies are
needed, how a security policy is written and so on.

A direction which is orthogonal to our goal, but also has its strengths, is the generation
of firewall rules from the policy. One paper implementing this approach is [Gut97].

63

Chapter 7

Summary

7.1 Conclusion

In the first part of this thesis we solved the problem of automating the specification-based
(conformance) testing of firewalls. As to our knowledge, this is the first such approach.
The few other approaches to automate firewall testing, do not test for conformance but
rather for vulnerabilities, which is important as well. Or more to the point: Only when
using conformance-testing and vulnerability-testing together, the “security” of a firewall
can be assured.

Conformance-testing needs at least two ingredients: an implementation to test and
a specification to test against. The implementation in our case is the firewall, which we
treat as black box. This makes our approach generic. One of the specifications is the
security policy. As there was no formal language to specify network security policies in,
which is needed to automatically test for conformance to a policy, we designed a language
for this purpose.

The other specification that is needed is a midpoint protocol specification, specifying
how a certain protocol should be handled by a firewall. We are the first to elaborate on
how such a midpoint protocol specification must look like, which we do in the second part
of this thesis.

Our contribution for Part I is a product-independent, automated approach for firewall
conformance testing. Using prototype tool support, we validated this approach.

7.2 Future Work

The field of firewall conformance testing is a fascinating field, which unfortunately has not
been given the necessary attention yet. But in today’s world, where everything depends on
digital data, firewall conformance testing is essential. We see many interesting problems
to be solved, both in research and engineering. We elaborate here on the problems we feel
to be most pressing.

65

7.2. FUTURE WORK CHAPTER 7. SUMMARY

Adaptation to the application layer A very important problem is to adapt our
method to the application layer. A firewall test method will only be useful if it can handle
application level firewalls.

Research-wise this includes adapting the formal policy language to being able to specify
dependencies between and payload of protocols. An example for a dependency is if a client
is only allowed to use a service after he has authenticated himself. Another example is
that Voice over IP (VoIP) consists of several protocols where the connection information
about one protocol might be negotiated using another protocol. This example additionally
shows why payload is important.

The application layer also presents an engineering problem: How to build a tool that
can generate messages for any protocol? I.e. how to let a tool craft a protocol message of
an unknown protocol.

Industrial-strength tool Another very important, mostly engineering problem, is to
implement an industrial-strength tool for our approach. Besides adding nicer user inter-
faces and the like to our prototype tool — see subsection 5.3.4 for details — this also
includes adapting our formal specification language to the needs of the users, and to
enhance the presentation of test results.

The problem with the formal specification language is that the requirements are un-
clear: Unfortunately the few companies having (informal) security policies do not want to
disclose them, because they fear that this will decrease their security level. But companies
can probably be won for a case study using our prototype tool support. The resulting
feedback, on the suitability of our formal policy language, could then be used to improve
the formal policy language.

With respect to the test evaluation, feedback from users could also be of help. Is it
enough to tell the tester only which test case did not succeed? Or does he need to know
from which policy rule this test case originated? Does he even need to know other things?
For example about related test cases that did succeed?

Only when we manage to make our approach easily usable, and adapted to the needs
of the users, we really solved the problem. That such a tool is absolutely necessary, is
shown by the interest in this thesis by military and banks. To achieve this goal, many
person-years would be necessary.

66

Part II

Endpoints versus Midpoints

67

Chapter 8

Motivation

Networks contain different kinds of principals. Some are communication endpoints, such
as clients and servers, while others are midpoints that forward, filter, or, more generally,
transform traffic. A midpoint that simply forwards traffic is straightforward to implement.
But as soon as stateful filtering comes into play, the midpoint must know the communica-
tion protocols used. This is TCP for packet filters and diverse application-level protocols
for application-level firewalls. If a midpoint does not know enough about the protocols
it filters, there exist ways to bypass a security policy. A prominent example is sending
file-sharing traffic over http when using packet filters.

Protocol specifications are normally written for endpoints. Starting from such spec-
ifications, it is not clear how a midpoint should enforce the protocol-conform execution
by the endpoints, as it can neither observe nor correctly track the protocol states of end-
points (see section 8.1 for more details on this problem). Another problem is that filtering
midpoints need to be as secure (i.e. as strict) as possible. However, they should also be
user-friendly (and therefore not overly strict). This leads to different interpretations on
how a midpoint should handle a given protocol.

The implications of the lack of protocol specifications for midpoints are that manufac-
turers of devices acting as midpoints have no guidelines on how they should implement
a protocol. In practice, midpoint manufacturers implement the same protocol differently,
based on their own interpretation of how the midpoint should handle the endpoint data.
This implementation is then incrementally adapted based on practical experience. To
show how this looks in practice, we present the TCP automata of three different firewalls
in section 8.2 and analyse their differences.

As a solution to this problem, we show how to systematically generate midpoint spec-
ifications from endpoint specifications. We propose an algorithm that, given the protocol
automata for the endpoints, generates a protocol automaton for the midpoint. Roughly
speaking, the algorithm tracks all possible endpoint states at each point in time, taking
into account messages in transit and possible network behaviour. We prove that the mid-
point automata constructed forward only those messages that could have resulted from
protocol-conform endpoints.

Despite the fact that midpoint automata are central for the construction of firewalls

69

8.1. THE SOURCE OF THE PROBLEM CHAPTER 8. MOTIVATION

Alice Midpoint Bob
CLOSED LISTEN
SYN-SENT — SYN → — SYN →

| ← SYN & ACK — ← SYN & ACK — SYN-RECEIVED

Figure 8.1: TCP scenario 1

Alice Midpoint Bob
CLOSED LISTEN
SYN-SENT — SYN → — SYN →

← SYN & ACK — ← SYN & ACK — SYN-RECEIVED
ESTABLISHED — ACK → |

Figure 8.2: TCP scenario 2

and other security gateways, the problem we address has not, to our knowledge, been
identified before. The closest related work is [BCMG01], which describes how to build
a monitor to find out if a system correctly implements an endpoint specification. The
authors report on the same problems as ours in determining the state of an endpoint.
This problem arises as packets can be reordered or lost between the monitor and the
endpoint. They propose several algorithms for a monitor. Unfortunately, their algorithm
that takes arbitrary reordering and loss into account is very inefficient (the authors call
it brute-force) and their refinements are too constrained to be useful in our setting. In
principle, their solution could be used to solve our problem, by using one monitor per
endpoint and attaching the output of one monitor to the input of the other. As their
monitors are inefficient, this is not a practical solution since firewalls should execute very
efficiently, i.e., make each decision with minimal overhead1. Note that we also solve a
different problem than they do: We do not care if the endpoints correctly implement a
protocol. Our goal is to only let messages arising from correct protocol runs pass the
firewall, independent of how the endpoints create them.

8.1 The Source of the Problem

In this section, we explain why midpoints are different from endpoints and why they thus
need a different protocol specification. The problem arises with the filtering midpoints.
These base their decisions — basically drop or forward — on the protocol states the
endpoints are in. Unfortunately the two endpoints of a connection can be in different
states and not all of these states are observable by the midpoint.

Consider the following example: the TCP connection initiation (three-way-handshake)
shown in Figure 2.2. Imagine the second packet gets lost after being forwarded by the
midpoint (Figure 8.1). Alice is now in the state SYN-SENT, whereas Bob is in state
SYN-RECEIVED. To the midpoint, this situation looks the same as the situation where the

1This is not a problem with our generated automata. The generation takes time but their execution
is very fast.

70

CHAPTER 8. MOTIVATION 8.1. THE SOURCE OF THE PROBLEM

second packet reaches Alice, but the third packet gets lost before being received by the
midpoint (Figure 8.2).

Given that the midpoint cannot differentiate between the scenario in Figure 8.1 and
the scenario in Figure 8.2, in what state should the midpoint be? And how should it
react upon receiving a SYN packet from Alice? In scenario 1, the SYN is a retransmission
and should be forwarded. Whereas in scenario 2, a SYN does not conform with a correct
protocol execution (Alice should not send SYN packets in state ESTABLISHED) and should
therefore be dropped.

The endpoints see the situation differently. Alice can clearly distinguish between
scenario 1, where she would repeat her SYN, and scenario 2, where she would repeat her
ACK. Bob cannot distinguish between the scenarios (or at least not until he has seen
Alice’s reaction), but he does not need to: he would repeat his SYN&ACK in any case.

Another scenario is possible: Alice may have crashed and the SYN at hand could
represent a new connection initiation (with the same source port as before). This scenario
can also happen later on in a connection. What should the midpoint then do? Should it
forward the SYN and risk damage to Bob? Should it just block the packet and hinder
Alice from communicating with Bob? Should it send a RST in Bob’s name? Should it
also send a RST in Alice’s name to Bob? All these questions must be answered when
giving a midpoint specification of TCP.

In this example, we see that one reason why midpoints cannot always track the protocol
states of the endpoints lies in packet loss. But packet loss is only part of the problem.
Another reason lies in the fact that certain endpoint constructs lead to ambiguity from
the midpoint’s perspective. These are:

1. Multiple transitions with the same output:

Consider two transitions qi
−/a
−→ qj and qi

b/a
−→ qk. Assume that the midpoint has

previously forwarded b to an endpoint with these two transitions and afterwards
receives an a. It cannot know from which transition this a originated.

2. Transitions without output:
In this case, a midpoint cannot distinguish between the start state of the transition
and the end state of the transition (at least until it has seen other, unambiguous
output from the endpoint). A special case is hidden states, which are states where
all incoming and outgoing transitions have no output. Such states can never be
identified by a midpoint.

3. A packet can be sent in different states:
This makes an unambiguous mapping between packets and states impossible. While
this is not a source of tracking problems, it does make recovering from them difficult.

71

8.2. CASE STUDY CHAPTER 8. MOTIVATION

Figure 8.3: TCP specification for a midpoint

8.2 Case Study

Differences in midpoints based on TCP

In the last section, we explained why it is nontrivial to build a midpoint from endpoint
specifications. In this section, we now show the implications of a lack of midpoint speci-
fications by documenting the current state of affairs. For this, we took three commonly
used firewalls — Checkpoint [Ltd], netfilter (iptables) [ea], and ISA Server [Mic] — and
reverse-engineered them, testing them against our (as there is no other) TCP midpoint
specification given in Figure 8.3 and then analysing the results by hand.

Additionally we also tested the transition from state NEW to state SYN A with all
different flag combinations. Doing this we found that the following flag-combinations
cause the transition from state NEW to state SYN A:

netfilter SYN; SYN & PSH; SYN & FIN; SYN & FIN & PSH
Checkpoint SYN; SYN & PSH
ISA Server SYN

As a result, we derived three distinct TCP automata (see Figures 8.4, 8.5 and 8.6). It
may appear that there are few differences, but for security-critical devices, every difference
represents a possible fault and hence is one too many. Also we have not taken into account
sequence numbers and fragmentation, where we might have found other differences. Below

72

CHAPTER 8. MOTIVATION 8.2. CASE STUDY

NEW SYN_A SYN_B ESTABLISHED

FIN1_A

FIN1_B

FIN2_A CLOSE_A

FIN2_B CLOSE_B

2 / 2 5 / 5

1 / 1

6 / 6

6 / 6

10 / 10

11 / 11

x1 / -, x2 / x2
x1 =
x2 = 6, 7,

x1 / -, x2 / x2
x1 = 12,
x2 = 10,

x1 / -, x2 / x2
x1 = 13,
x2 = 11,

7 / 7

11 / 11

11 / 11

6 / 6

10 / 10

7 / 7

10 / 10

1 / 1

1 / 1

1 / 1

1 / 1

1 / 1, x / -
x = 3 - 13

x1 / -, x2 / x2
x1 = 4, 6, 8, 10, 12, 13
x2 = 2,

x1 / -, x2 / x2
x1 = 12, 13
x2 = 5,

x1 / -, x2 / x2
x1 = 13, 12
x2 = 11,

x1 / -, x2 / x2
x1 = 12, 13
x2 = 10,

x1 / -, x2 / x2
x1 = 13,
x2 = 6, 11,

x1 / -, x2 / x2
x1 = 12,
x2 = 7, 10,

1 / 1

1 / 1

1 / 1

1 / 1

3, 7, 9, 11 2 - 4, 7 - 11 2 - 5
12, 13

8 / 8

9 / 9

13
2 - 6, 8, 9

2 - 6, 8
13

9 / 9

2 - 5, 7 - 10

12
2 - 5, 7 - 9

12
2 - 5, 7, 9

8 / 8

2 - 6, 8, 9, 11

Figure 8.4: TCP automaton in iptables (ip conntrack 2.1)

NEW SYN_A SYN_B ESTABLISHED

FIN_A

FIN_B

CLOSE_A

CLOSE_B

2 / 2 5 / 5

1 / 1

6 / 6

10 / 10

11 / 11

 x1 / -, x2 / x2
x1 = 2, 3,
x2 = 6, 7,

 x1 / -, x2 / x2
x1 = 2, 3, 12,
x2 = 7, 10,

x1 / -, x2 / x2
x1 = 2, 3, 13,
x2 = 6, 11,

11 / 11

10 / 10

1 / 1

1 / 1, x / -
x = 3 - 13

 x1 / -, x2 / x2
x1 = 3, 7, 11 - 13
x2 = 2,

 x1 / -, x2 / x2
x1 = 3, 12, 13
x2 = 5,

x1 / -, x2 / x2
x1 = 12, 13?
x2 = 11,

x1 / -, x2 / x2
x1 = 12, 13
x2 = 10,

1 / 1

1 / 1

1 / 1

 2 / 2

SYN_A

x1 / -, x2 / x2
 x1 =
 x2 = 1, 6

 2 / 2

SYN_A

 x1 / -, x2 / x2
 x1 =
x2 = 1, 7

4, 6, 10

2, 4, 7, 10, 11

4, 5

4 - 6

7, 10

4, 5, 7

6, 11

12, 13

13

12

3, 4, 5, 13?

3 - 5

Figure 8.5: TCP automaton in Checkpoint R55W

73

8.2. CASE STUDY CHAPTER 8. MOTIVATION

NEW SYN_A SYN_B ESTABLISHED

FIN1_A

FIN1_B

FIN2_A CLOSE_A

FIN2_B CLOSE_B

2 / 2 5 / 5

1 / 1

6 / 6

6 / 6

10 / 10

11 / 11

 x1 / -, x2 / x2
x1 = 3,
x2 = 6, 7,

 x1 / -, x2 / x2
x1 = 3, 12,
x2 = 10,

 x1 / -, x2 / x2
x1 = 3, 13,
x2 = 10, 11,

7 / 7

11 / 11

9 / 9
11 / 11

6 / 6

10 / 10

7 / 7

8 / 8

1 / 1

1 / 1

1 / 1

1 / 1

1 / 1, x / -
x = 3 - 13

 x1 / -, x2 / x2
x1 = 3, 12, 13
x2 = 2,

 x1 / -, x2 / x2
x1 = 3, 8, 12, 13
x2 = 5,

 x1 / -, x2 / x2
x1 = 3, 12, 13
x2 = 11,

 x1 / -, x2 / x2
x1 = 3, 12, 13
x2 = 10,

 x1 / -, x2 / x2
x1 = 3, 13,
x2 = 6, 11,

 x1 / -, x2 / x2
x1 = 3, 12,
x2 = 7, 10,

1 / 1

1 / 1

1 / 1

1 / 1

4, 6 - 11

2, 4, 7, 9 - 11

12, 13
 2, 4, 5

8 / 8

9 / 9

2, 4 - 6, 8, 9, 11

13

2, 4 - 6, 8

13

2, 4, 5, 7 - 10

2, 4, 5, 7 - 9

2, 4, 5, 7, 9

2, 4 -6, 8, 9, 11

12

12

10 / 10

Figure 8.6: TCP automaton in ISA Server v4.0.2161.50

we describe three of the differences:

A ’clean’ three-way-handshake is not enforced
To initiate a TCP connection, a so called three-way-handshake is used (see Figure 2.2).
So let us assume the firewall has accepted a SYN from an endpoint E0 (Alice) to another
endpoint E1 (Bob). If there is now a SYN&ACK from E1 to E0, then everything works as
expected: the packet should be let through and the firewall should enter the next state.
If there is another SYN from E0 to E1, then this will be a retransmission (it could be
that the first SYN was lost between the firewall and E1) and should be allowed as well. If
there is a RST from E1 to E0, then E1 does not want this connection, the packet should
be let through, and the TCP automaton be initialised. All other packets make no sense
at this time and therefore should be blocked. Unfortunately, in all of the tested firewalls,
additional packets were let through. As one example, a FIN from E1 to E0 is allowed
during connection initiation in netfilter. But there is no connection to be closed: If E1 is
not accepting the connection then it would send a RST.

After a FIN, data from both sides is still accepted
If E0 sends a FIN to E1, then this means that E0 wants to close the connection. After
this FIN, E1 is still allowed to send data, but E0 is not (it makes not sense to send data
after requesting to close the connection), except for the ACK belonging to E1’s FIN. As
packets may not arrive in their correct ordering at the firewall, the firewall cannot just
drop all packets from E0 after having seen a FIN from B. But the firewall should just let

74

through older packets (based on the sequence number), a retransmission of the FIN, and
the ACK to E1’s FIN&ACK (after having received E1’s FIN&ACK). To accomplish this
task, the firewall has to keep track of the sequence numbers. This appears not to be done,
and therefore too many packets are let through.

SYNs are accepted during already established connections
SYNs are only used for connection initiation. That means that if a connection is fully
established, there will be no more legitimate SYNs (based on the sequence numbers)
belonging to that connection. But netfilter and ISA Server accept SYNs (from the initiator
of the connection) all the time. Checkpoint does block the SYNs, but always allows SYN
& ACK, which is not much better.

These findings show that there is a lack of consensus, at best, and a general lack of
understanding, at worst, about how TCP should be handled by a firewall. The result is
that every vendor does something different. We would like to contribute a solution to
this problem by showing, systematically, how to construct midpoint specifications from
endpoint specifications.

Chapter 9

Construction of a Midpoint
Automaton from Endpoint
Automata

In chapter 8, we saw why there is a need for midpoint specifications. Basically there
are two ways to construct such a specification: write it directly or generate it from the
endpoint specification. The first alternative has two major drawbacks: 1) the consistency
with the endpoint specification must somehow be assured and 2) it requires additional
work for protocol designers. The second alternative overcomes both problems.

9.1 Setting

We subsequently consider only two-party protocols, i.e. protocols for only two endpoints.
This covers most network protocols1. Let E0 and E1 be the endpoints and M the midpoint
through which communication passes. Communication takes place in the form of mes-
sages, where the endpoint specification of the communication protocol determines when
an endpoint may send which kind of message. For every message arriving at the midpoint,
the midpoint can either forward the message (Figure 9.1) or drop it (Figure 9.2).

We write X → Y : m to express that the message m is sent from the endpoint X to the
other endpoint Y , where X ∈ {E0, E1}, Y ∈ {E0, E1}, and Y 6= X. As there is a midpoint
M between E0 and E1, every X → Y : m can be divided into the two parts X → M : m
and M → Y : m′. This makes explicit on which side of the midpoint a message is and also
simplifies the specification of the actions of the midpoint: m′ = m if the midpoint forwards
the message unaltered, m = − (where − signifies no external output) if the midpoint drops
the message, and m′ 6= m if the midpoint alters the message before forwarding it. The
messages may be altered, for example, when using Network Address Translation (NAT)
in the firewall. For the sake of simplicity we will not consider this case.

1It is straightforward to expand our approach to protocols with more endpoints.

77

9.2. IDEA CHAPTER 9. CONSTRUCTION

E0 M

m

E1

m’

Figure 9.1: A message m from endpoint E0 to endpoint E1, forwarded by the midpoint M .

E0 M

m

E1

Figure 9.2: A message m from endpoint E0 to endpoint E1, dropped by the midpoint M .

E0 M

m

E1

Figure 9.3: A message m from endpoint E0 to endpoint E1, lost by the network.

We will construct our midpoints to be permissive rather than restrictive. This means
that our midpoint forwards messages if they could have resulted from protocol-conform
endpoints. Thus our midpoint can possibly accept an incorrect message, but only in the
cases where there is a correct scenario where this message could occur.

For the transport of the messages between the endpoints (via the midpoint) we assume
a network that either (1) delivers messages, although not necessarily preserving the order,
or (2) looses them (Figure 9.3).

9.2 Idea

Before giving the construction of a midpoint automaton from endpoint automata in sec-
tion 9.3, we first sketch the ideas behind our construction.

We model the global state of a system (the endpoints, midpoint, and network) at some
time t as a state stt = (qt

0, q
t
M , qt

1, nett), where qt
i is the state of endpoint Ei at time t,

qt
M is the state of the midpoint M at time t, and nett consists of all messages travelling

between the endpoints at time t.

Base midpoint-actions on environment-state The midpoint M has to base its
actions on the state of its environment. If M could observe all actions in the system,
qt
M = (qt

0, q
t
1, nett) would hold at any time t, meaning that M always knows the exact

states of the endpoints and the contents of the network. But midpoints generally cannot
always determine the correct values of these components and hence we will let the state
of our midpoint be a set of such triples, where each of these triples represents a possibly
correct view of the system. Thus the triples of one state qt

M are equivalent in the sense

78

CHAPTER 9. CONSTRUCTION 9.2. IDEA

that they are not distinguishable by the midpoint with its current knowledge, i.e. based
on the traffic it has previously observed.

Example 1 To provide further intuition about the functioning of a midpoint, let us con-
sider an example. Suppose the system starts in the global state st1 = (q1, {(q1, q1, net1)},
q1, net1). This means that E0 and E1 both are in their start states, the network content
is net1 and the midpoint knows about all this. Note that q1 of E0 and q1 of E1 are not
the same as they do not belong to the same automaton. Assume the following steps are
taken:

1. M sends (forwards) a message x to E0.
To track the fact that the network now contains x, M must change its state to
q2
M = {(q1, q1, net2)}, where net2 = net1 ∪ {M → E0 : x}. The global state is then

st2 = (q1, {(q1, q1, net2)}, q1, net2).

2. x is received by E0 and used as input to its automaton. Suppose, for E0 in state

q1, there are only two transitions: q1
x/y
−→ q2 and q1

−/z
−→ q3. As M does not know

if and when E0 makes a transition, it cannot directly act on this step and thus
its state is wrong. The global state is st3 = (q2, {(q1, q1, net2)}, q1, net3), where
net3 = (net2 \ {M → E0 : x}) ∪ {E0 →M : y}.

3. A message y reaches M .
To take a correct decision, M must compute what could have happened (all possible
successor steps) since its last step. This is either:

• nothing, i.e., (q1, q1, net2),

• E0 consumes x, makes a transition to q2, and outputs y: (q2, q1, net3), or

• E0 makes a transition to q3, and outputs z: (q3, q1, net2 ∪ {E0 →M : z}).

Now, M can determine its reaction on y. If there is one or more triple having
y in its net (a possibly correct scenario where y occurred), y is forwarded and
M ’s next state will consist of all these matching triples with their nets updated:
q4
M = {(q2, q1, net4)}, where net4 = (net3 \ {E0 → M : y}) ∪ {M → E1 : y}. The

global state is st4 = (q2, {(q2, q1, net4)}, q1, net4).

Example 2 In the example above, there was only one endpoint transition between
two consecutive midpoint transitions. In such a case, tracking (computing all possible
successor states) is not difficult. The situation is more complex if more than one end-
point transition can happen between two consecutive midpoint transitions. Figure 9.4
provides an example. Since communication need not be order preserving, after two con-
secutive endpoint transitions, the second message (E0 → M : z2) may reach the midpoint
first. Thus it would not be enough if the midpoint computed only the next possible
state (reachable in one step), but all possible successor states are needed, as only this

79

9.3. CONSTRUCTION CHAPTER 9. CONSTRUCTION

E0 M

(q1, qB, {M -> E0: x, M -> E0: y})q1 q2 q3

x / z1 y / z2

M -> E0: x
M -> E0: y

E0 M

(q1, qB, {M -> E0: x, M -> E0: y})q1 q2 q3

x / z1 y / z2

M -> E0: y
E0 -> M: z1

E0 M

(q1, qB, {M -> E0: x, M -> E0: y})q1 q2 q3

x / z1 y / z2

E0 -> M: z1
E0 -> M: z2

Figure 9.4: Two consecutive endpoint transitions

would lead to {(q1, qB, {M → E0 : x, M → E0 : y}), (q2, qB, {M → E0 : y, E0 → M :
z1}), (q3, qB, {E0 → M : z1, E0 → M : z2})} and thus lead to the correct action —
forwarding z2 — and the correct next state {(q3, qB, {E0 →M : z1, M → E1 : z2})}.

All possibly correct messages must be forwarded Let us return to our first ex-
ample to illustrate why all possibly correct messages must be forwarded. Assume that we
have the following sequence of actions:

1. M forwards a message x to E0.

2. x is lost by the network.

3. E0 takes the transition to state q3.

4. An intruder sends message y (which is incorrect at q3).

5. y reaches M .

For the midpoint, this scenario looks exactly the same as the one before. But here y is
an incorrect message. As we never want to block correct messages (our decision for a
permissive rather than restrictive midpoint), we have to accept y here (it could be the
correct one from above).

9.3 Construction

We will now give the technical details of our construction of a midpoint automaton from
endpoint automata. A two-party protocol p can be specified by two Mealy machines (one

80

CHAPTER 9. CONSTRUCTION 9.3. CONSTRUCTION

for each endpoint):

A0 = (Q0, Σ0, Γ0, δ0, λ0, q0,1)

A1 = (Q1, Σ1, Γ1, δ1, λ1, q1,1)

Note that Σ0 = Γ1 and Γ0 = Σ1 since these automata must be able to communicate with
each other. Often even A0 and A1 are the same.

The network can be modelled as a multiset (also called bag), which stores all messages
in transit between the midpoint and the endpoints. Specifically

net ⊆M(S) = {x′ | x ⊆ S, x′ =s x},

where S is the set of messages allowed by the protocol and =s denotes set equality (the
sets contain the same elements, ignoring repetition).

In our construction, net will be part of a state of a deterministic automaton. Since we
cannot handle a network of infinite size we must forbid actions of the endpoints and the
network that can put infinitely many packets into the network. Hence, for the endpoints,
we forbid loops without input in their protocol automata. For the network, we do not
model message duplication. These restrictions are not problematic as the former should
not be present and the latter can easily be detected and handled on another layer. Thus,
it suffices to consider

net ⊆ P(S), where S = {X → Y : m|X, Y ∈ {E0, E1, M}, Y 6= X, m ∈ (Σ0 ∪ Γ0)}.

Before starting with the construction of the midpoint automaton, we need to define
the actions that are possible in our system. These are either transitions by the endpoints
or the midpoint, based on their automata, network loss, or a message inserted by an
intruder.

Definition 1 stt+1 = (qt+1
0 , qt+1

M , qt+1
1 , nett+1) is a successor state of stt =(qt

0, qt
M , qt

1,
nett), denoted stt ⊢ stt+1, if one of the following conditions holds.

Midpoint transition: For any msg ∈ net with msg = (Ei →M : m),

qt+1
0 = qt

0,

qt+1
1 = qt

1,

qt+1
M = δM(qt

M , msg),

nett+1 = (nett \ {msg}) ∪ {λM(qt
M , msg)}

(9.1a)

81

9.3. CONSTRUCTION CHAPTER 9. CONSTRUCTION

Correct endpoint transition: For any msg ∈ nett with msg = (M → Ei : m) (the endpoint
taking an input from the network) or for m = − (no input)

msg′ =

{

(Ei →M : λi(q
t
i , m)) ifλi(q

t
i , m)) 6= −,

− otherwise,

nett+1 = (nett \ {msg}) ∪ {msg′},

qt+1
i = δi(q

t
i , m),

qt+1
1−i = qt

1−i,

qt+1
M = qt

M

(9.1b)

Incorrect transition:

msg′ ∈ (Γi \ {λi(q
t
i , x)|(M → Ei : x) ∈ nett or x = −},

nett+1 = nett ∪ {msg′},

qt+1
0 = qt

0,

qt+1
1 = qt

1,

qt+1
M = qt

M

(9.1c)

Network loss: for any msg ∈ nett,

qt+1
0 = qt

0,

qt+1
1 = qt

1,

qt+1
M = qt

M ,

nett+1 = nett \ {msg}

(9.1d)

Note that as the network is modelled by a multiset, the permutation of messages is handled
implicitly. Furthermore, note that an endpoint transition must not produce output. We
denote empty output as ’−’.

Definition 2 Transitions (9.1a), (9.1b) and (9.1d) represent correct transitions. We
denote a message resulting from a correct transition as a correct message and all other
messages as incorrect messages.

Definition 3 A correct trace is a trace st1 ⊢ st2 ⊢ · · · ⊢ stn, where every transition
sti ⊢ sti+1, with 1 ≤ i < n, is a correct transition.

Definition 4 The message history of a trace tr = st1 ⊢ st2 ⊢ · · · ⊢ stn is a sequence
of messages m1, m2, · · · , mt, where t is the number of non-midpoint transitions in tr that
produce output, and mi is the output from the ith of these transitions.

Definition 5 The midpoint message history of a trace tr = st1 ⊢ st2 ⊢ · · · ⊢ stn is a
sequence of messages m1, m2, · · · , ms, where s is the number of midpoint transitions in
tr, and mi is the input of M at its ith transition in tr.

82

CHAPTER 9. CONSTRUCTION 9.3. CONSTRUCTION

Definition 6 Two traces are midpoint equivalent if they have the same midpoint message
history.

Definition 7 Two triples (a, c, d) and (e, g, h) are midpoint equivalent if there exist two
midpoint equivalent traces tr1 and tr2 with tr1 = s1 ⊢ s2 ⊢ · · · ⊢ (a, b, c, d) and tr2 = st1 ⊢
st2 ⊢ · · · ⊢ (e, f, g, h).

To have a correctly functioning midpoint, two properties about a midpoint state qM

must be satisfied: 1) one of the triples in qM is the correct one (Definitions 8 and 9); and
2) only possibly correct messages are forwarded (Definition 10).

Definition 8 qt
M is a correct tracking at time t if qt

M is neither too small nor too large.
Not too small means that (qt

0, q
t
1, nett) ∈ qt

M . Not too large means that all q ∈ qt
M are

midpoint equivalent to (qt
0, q

t
1, nett).

Definition 9 M tracks endpoints correctly if for every midpoint transition (qn−1
0 , qn−1

M ,
qn−1
1 , netn−1) ⊢ (qn

0 , qn
M , qn

1 , netn) in a trace, qn
M is a correct tracking at time n.

Definition 10 M computes outputs correctly if for every trace tr = st1 ⊢ . . . ⊢ stn and
every t, 1 ≤ t ≤ n we have:

λM(qt
M , Ei → M : m) =



















M → Ej : m if Ei →M : m occurs in the message history

of any trace tr′ which is midpoint equivalent

to tr,

− otherwise.

where j = 1− i.
As M cannot distinguish between tr and tr′, it must forward all messages that occur in
any of these traces, in order to avoid ever dropping a correct message.

Based on A0 and A1, we will now construct a Mealy machine AM for the handling of
the protocol p by the midpoint:

AM = (QM , ΣM , ΓM , δM , λM , sM)

QM = P(Q0 ×Q1 × net)

ΣM = {E0 → M : a | a ∈ (Γ0 \ {−}} ∪ {E1 → M : a | a ∈ (Γ1 \ {−}}

ΓM = {M → E0 : a | a ∈ (Σ0 \ {−}} ∪ {M → E1 : a | a ∈ (Σ1 \ {−}} ∪ {−}

qM,1 = {(q0,1, q1,1, {})}

Before we define the functions δM and λM , we first analyse the different possible scenarios.
We do this with the help of Figure 9.5. There we examine the relationship between
the actions of an endpoint E0 (the situation for E1 is analogous), the network, and the
midpoint M . In particular, we consider how the four different types of transitions an

83

9
.3

.
C

O
N

S
T

R
U

C
T

IO
N

C
H

A
P

T
E

R
9
.

C
O

N
S
T

R
U

C
T

IO
N

Endpoint E0 Network Midpoint correct midpoint transition Eq.
-

E0 M

x δM(qM ,−) = {(q2, qE1
, netM \ {M → E0 : x})} (9.2b)

λM(qM ,−) = −

q1 q2x / -
E0 M

x δM(qM ,−) = {(q2, qE1, netM \ {M → E0 : x})} (9.2c)
λM(qM ,−) = −

E0 M

x

y

δM(qM ,−) = {(q3, qE1
, netM \ {M → E0 : x})} (9.2c)

q1 q3x / y
λM(qM ,−) = − (9.2b)

E0 M

x

y

δM(qM , E0 → E1 : y) (9.2c)
= {(q3, qE1, (netM \ {M → E0 : x}) ∪ {M → E1 : y})}

λM(qM , E0 → E1 : y) = E0 → E1 : y

E0 M

x

y

δM(qM , E0 → E1 : y) (9.2b)
= {(q4, qE1, (netM \ {M → E0 : x}) ∪ {M → E1 : y})} (9.2d)

λ(qM , E0 → E1 : y) = E0 → E1 : y

q1 q4- / y
E0 My

δM(qM , E0 → E1 : y) (9.2d)
= {(q4, qE1, netM ∪ {M → E1 : y})}

λ(qM , E0 → E1 : y) = E0 → E1 : y

E0 My

M

δM(qM ,−) = {(q4, qE1, netM)} (9.2d)
λM(qM ,−) = − (9.2b)

q1 q5- / -
E0 M

δM(qM ,−) = {(q5, qE1, netM)} (9.2d)
λM(qM ,−) = −

Figure 9.5: A transition in an endpoint, from a midpoint’s view

84

CHAPTER 9. CONSTRUCTION 9.3. CONSTRUCTION

endpoint can take (x/−, x/y, −/y, and −/−, for x ∈ Σ0, y ∈ Γ0) look from the endpoints’,
the network’s, and the midpoint’s respective point of view. These are shown in columns
1 – 3, where one row represents one case. Note that one view (row) of one principal can
belong to several views of another principal.

In the fourth column, the correct midpoint transition is shown. That is the transition
the midpoint must take if it wants to track correctly the endpoint’s state and the messages
in the network2. For this we assume qM = {(q1, qE1

, netM)} to be the state of the midpoint
after its last transition (where applicable, this is forwarding x). Note that netM contains
all the messages in the network. Therefore a message has to be removed from netM if it
is no longer in the network, either because it was consumed by an endpoint or midpoint,
or lost by the network.

As an example, let us explain the contents of the third row (in the first column,
the third and the forth row coincide). Here a message x is forwarded by M to E0, i.e.
M → E0 : x (3rd column). This message then reaches E0 (2nd column), which uses
it as input to its x/y-transition (1st+column). After this transition, E0 is in state q3

(1st column) and a message y (E0 → M : y) has been inserted to the network (2nd
column). This message is then lost by the network (2nd column). To correctly represent
these actions, M has to change its state as given: E0 is now in state q3 and the net no
longer contains x (4th column). Note that netM does not contain y as its insertion is
compensated by its removal.

With the help of Figure 9.5, we will now define the successor function. This function
computes all direct successor states of a triple of the midpoint state (the transition function
will then later choose some of these triples, based on its input). The figure illustrates why
we sometimes have more than one possible successor state: the midpoint (3rd column)
cannot distinguish all the scenarios (rows). Note that Figure 9.5 only considers one
endpoint, whereas succ considers both endpoints (the equations (9.2c) and (9.2d) for E0

correspond to the equations (9.2e) and (9.2f) for E1).

succ(qM) =
⋃

q∈qM

⋃

(M→E0:m1)∈netM

⋃

(M→E1:m4)∈netM

⋃

msg∈netM

{(q0, q1, netM), (9.2a)

(q0, q1, netM \ {msg}), (9.2b)

(δ0(q0, m1), q1, (netM \ {M → E0 : m1}) ∪m2) (9.2c)

(δ0(q0,−), q1, netM ∪m3) (9.2d)

(q0, δ1(q1, m4), (netM \ {M → E1 : m4}) ∪m5), (9.2e)

(q0, δ1(q1,−), netM ∪m6)} (9.2f)

2We will later give definitions of δM and λM that incorporate all these scenarios. The fifth column
gives the number of the corresponding equations.

85

9.3. CONSTRUCTION CHAPTER 9. CONSTRUCTION

where

m2 =

{

{E0 →M} : λ0(q0, m1) λ0(q0, m1) 6= −,

∅ otherwise,
(9.2g)

m3 =

{

{E0 →M : λ0(q0,−)} λ0(q0,−) 6= −,

∅ otherwise,
(9.2h)

m5 =

{

{E1 →M : λ1(q1, m4)} λ1(q1, m4) 6= −,

∅ otherwise,
(9.2i)

m6 =

{

{E1 →M : λ1(q1,−)} λ1(q1,−) 6= −,

∅ otherwise.
(9.2j)

The function succ computes all the states that are reachable in one step by an endpoint
or the network. Since we are interested in all possible successor states, we must compute
the closure of succ, defined as

cl(succ(x)) =

∞
⋃

i=0

succi(x). (9.3)

Observe that the closure is monotonic. It also has an upper bound, namely

cl(succ(qt
M)) ⊆ P({(q0, q1, n)|q0 ∈ Q0, q1 ∈ Q1, n ∈ net}).

Hence, as Q0, Q1, and net are finite, cl(succ(qt
M)) is also finite.

We now can define δM . The idea is to let our midpoint “track” all possible actions. We
do this by first calculating the closure of all possible next states before actually executing
a transition based on them.

δM(qM , m) =
⋃

(q0,q1,netM)∈cl(succ(qt

M
))

{(q0, q1, (netM \ {m}) ∪ λM(qM , m))}|m ∈ netM} (9.4)

Note that cl(succ(qt
M)) represents all possible successor states of qt

M , whereas δM(qt
M , m)

only contains those successor states of qt
M which can be “reached” with a message m. λM

is now straightforward: If there is any triple where the input occurs, i.e. the message is
correct in some midpoint-equivalent trace, the input is forwarded.

out((q0, q1, netM), Ei → M : y) =

{

{M → Ej : y} if {Ei →M : y} ∈ netM ,

∅ otherwise.
(9.5)

where j = 1− i, and

λM(qM , m) =

{

out(q, m) if there exists a q ∈ cl(succ(qM)) with (out(q, m) 6= −),

− otherwise.

(9.6)

86

CHAPTER 9. CONSTRUCTION 9.4. CORRECTNESS

Note that for each m, there is at most one non-empty (not ’−’) value for out(q, m). Hence,
λM is well-defined. This is due to the fact that our midpoint either drops or forwards
a message. This would have to be revised for a midpoint that alters messages (e.g. a
firewall performing Network Address Translation).

9.4 Correctness

As stated in section 9.2, a correctly functioning midpoint must satisfy two properties: 1)
one of its state triples is correct; and 2) only possibly correct messages are forwarded. In
this section, we prove that a midpoint, constructed as described in section 9.3, satisfies
the above properties.

Property I: one state triple is correct.

We prove the first property with the help of the following lemmas. During the proofs, we
will denote the correct triple (qt

0, q
t
1, nett) at time t as qt

corr.

Lemma 1 Given an M produced by our midpoint construction and a trace st1 ⊢ st2 ⊢
· · · ⊢ stn, if there is a correct tracking at time t1, then the tracking after the next midpoint
transition stt2 ⊢ stt2+1, t2 ≥ t1, is also correct.

Lemma 2 Given an M produced by our midpoint construction and a trace tr = st1 ⊢
st2 ⊢ · · · ⊢ stn, for any midpoint transition stt2 ⊢ stt2+1, there is a correct tracking at
each time t1 with 1 ≤ t1 ≤ t2 < n.

Lemma 3 Given an M produced by our midpoint construction, M tracks endpoints cor-
rectly (as defined in Definition 9).

Lemma 3 follows from the other two. If for every midpoint transition there exists
an earlier correct tracking (Lemma 2), then the tracking after the midpoint transition is
correct (Lemma 1). Hence the tracking after every midpoint transition is correct.

Proof of Lemma 1

It suffices to show that cl(succ(qt1
M)) is a correct tracking at time t2. The midpoint

transition which then takes place — nett2+1 = (nett2 \ {msg})∪ λM(qt2
M , msg) (Definition

(9.1a)) is reflected by δM (Equation (9.4)).
To show that cl(succ(qt1

M)) is a correct tracking at time t2, it suffices to show that
succ(t2−t1)+1(qt1

M) is a correct tracking at time t2. We establish the following proposition
by induction on t = t2− t1.

succt(qt1
M) is a correct tracking at time t1 + t (= t2). (9.7)

87

9.4. CORRECTNESS CHAPTER 9. CONSTRUCTION

Basis t = 1
qt1
M is a correct tracking at time t1 (as given). From Lemma 4, succ(qt1

M) is a correct
tracking at time t2.

Step We assume now that the induction hypothesis (9.7) holds for t = n, and we prove
it for t = n + 1.
By the induction hypothesis, succn(qt1

M) is a correct tracking at time t1 + n. By Lemma
4, established below, succ(succn(qt1

M)) = succn+1(qt1
M) is a correct tracking at time (t1 +

n) + 1 = t1 + (n + 1). QED.

Proof of Lemma 4

Lemma 4 succ(qt
M) is a correct tracking at time t+1, if qt

M is a correct tracking at time
t.

To prove this lemma, we have to show the following:

1. For a correct transition stt ⊢ stt+1, qt+1
corr ∈

⋃

q∈qt

M

succ(q).

2. A message from an incorrect transition is not added to nettM by succ, except in the
case where it could also occur in a correct trace.

We now consider each case.

1. succ for correct transitions. We consider the following cases:

(a) correct endpoint transition

i. msg = (M → Ei : m) ∈ nett

By Definition (9.1b) we have:

qt+1
i = δi(q

t
i , m)

qt+1
1−i = qt

1−i

qt+1
M = qt

M

nett+1 = (nett \ {M → Ei : m}) ∪msg′

msg′ =

{

{Ei →M : λM(qt
i , m)} λM(qt

i , m)) 6= −,

∅ otherwise.

By Equation (9.2c) it holds that ∀(M → E0 : m1) ∈ nettM , (δ0(q
t
0, m1), q

t
1,

(nettM \ {M → E0 : m1}) ∪m2) ∈ succ(qt
corr),

where m2 =

{

{E0 →M : λ0(q
t
0, m1)} λ0(q

t
0, m1) 6= −,

∅ otherwise.

88

CHAPTER 9. CONSTRUCTION 9.4. CORRECTNESS

and
∀(M → E1 : m4) ∈ nettM , (qt

0, δ1(q
t
1, m4), (nettM \ {M → E1 : m4}) ∪m5) ∈

succ(qt
corr)

where m5 =

{

{E1 →M : λ1(q
t
1, m4)} λ1(q

t
1, m4) 6= −,

∅ otherwise.

ii. msg = −
By Definition (9.1b) we have:

qt+1
0 = δ0(q

t
0,−)

qt+1
1 = qt

1

qt+1
M = qt

M

nett+1 = nett ∪msg′

msg′ =

{

{Ei → M : λM(qt
i ,−)} λM(qt

i ,−)) 6= −,

∅ otherwise.

By Equation (9.2d) it holds that (δ0(q
t
0,−), qt

1, nettM ∪m3)succ(qt
corr),

where m3 =

{

{E0 →M : λ0(q
t
0,−)} λ0(q

t
0,−) 6= −,

∅ otherwise.

and
(qt

0, δ1(q
t
1,−), nettM ∪m6)} ∈ succ(qt

corr)

where m6 =

{

{E1 →M : λ1(q
t
1,−)} λ1(q

t
1,−) 6= −,

∅ otherwise.

(b) network loss
By Definition (9.1d), the following holds:

qt+1
0 = qt

0

qt+1
1 = qt

1

qt+1
m = qt

m

nett+1 = nett \ {msg}

where msg is an arbitrary element of nett. By Equation (9.2b) it holds that
∀msg ∈ nettM , (qt

0, q
t
1, nettM \ {msg}) ∈ succ(qt

corr)

2. succ for incorrect transitions
By Definition (9.1c), a message from an incorrect transition has the form: msg ∈
((Γi \ {λi(q

t
i , m)|m ∈ nett}) \ λi(q

t
i ,−)). msg could be added to the net of some q ∈

qt
M , if the following holds (see Equations (9.4) and (9.2c) – (9.2f)): ∃(q0, q1, net) ∈ qt

M

with λi(qi,−) = msg or λi(qi, m) = msg, m ∈ net. By the induction hypothesis,
qt
M represents a correct tracking at time t. From this it follows that only those

89

9.4. CORRECTNESS CHAPTER 9. CONSTRUCTION

incorrect messages are added to the net of some triple that could also occur in a
correct scenario.

QED.

Proof of Lemma 2

Basis first midpoint transition in a trace.
The first state st1 is a correct tracking at time 1:

st1 = (q1
0, q

1
M , q1

1, net1) = (q0,1, (q0,1, q1,1, {}), q1,1, {}).

The first midpoint transition cannot take place before st1 ⊢ st2. By Lemma 1, this means
that the tracking after the first midpoint transition is correct.

Step nth midpoint transition, n > 1.
By the induction hypothesis, the tracking is correct after the (n − 1)th midpoint transi-
tion. By Lemma 1, this implies that the tracking is also correct after the nth midpoint
transition. QED.

Property II: only possibly correct messages are forwarded

Lemma 5 M computes outputs correctly (as defined in Definition 10).

We show the correctness of λM(qt
M , msg) in two steps:

1. msg = (Ei →M : m) was inserted by a correct transition.
In the proof of Lemma 9.4 we have shown that there is a triple qt

corr ∈ qt
M with

qt
corr = (qt

0, q
t
1, nett). The output of this triple, defined by Equation (9.5), is correct,

namely msg′ = (M → Ej : m). For every other triple q, out(q, msg) is either msg′

or −. Thus, by Equation (9.6), λM(qt
M , Ei →M : m) is correct.

2. msg was inserted by an incorrect transition.
As seen above, there can only be a (q0, q1, net) ∈ qt

M with msg ∈ net if this represents
a possibly correct scenario. But, in this case, forwarding msg is correct.3 QED.

3Note that in this case, the endpoints might not be able to continue their run of the protocol; the
incorrect endpoint is only able to continue to send messages if they belong to a possibly correct scenario.
This is the price of having a permissive firewall.

90

Chapter 10

Summary

10.1 Discussion

In section 8.2 we analysed the TCP automata of several firewalls. We now compute the
TCP midpoint automaton using the construction just presented. For endpoint automata,
we use the automaton from the TCP specification for endpoints [ISI81b, page 23].

The endpoint automaton in the TCP specification combines the initiator and the
responder role. These roles are handled differently by firewalls, which distinguish between
the networks outside and behind the firewall. Normally only one side is allowed to initiate
a connection. Therefore we made two copies of the TCP endpoint automaton from the
specification, one for each of the roles, which we adapt as follows. We chose E0 to play the
role of the initiator. Therefore we denote the state CLOSED as the start state of automaton
A0 and delete the state LISTEN from A0. Furthermore, as we are only interested in one
run of the protocol, we name the end state of A0 CLOSED2 (instead of CLOSED). To let E1

play the role of the responder, we denote the state LISTEN as the start state of A1 and
delete the state SYN-SENT and the transitions from state CLOSED to state LISTEN from A1.
The resulting, minimised midpoint automaton can be found in Figure 10.1. The abstract
test cases generated from this automaton can be found in Appendix C.

As expected, in each state of the midpoint, there is considerable uncertainty about the
exact state of the endpoints. This is reflected in the fact that some midpoint states consist
of over 60 triples. Despite this, the automaton is of manageable complexity, in particular
the number of outgoing transitions per state is small (1 – 3). The multiple transitions
reflect the (limited) ways that messages can be sent independently by the endpoints and
how they can be reordered by the network.

Note too that our midpoint automaton has 7 more states (a – g) than our reverse-
engineered TCP automata. This reflects the additional complexity necessary to properly
track possible network events. Let us illustrate this with an example. In our midpoint
automaton, it can clearly be seen that, to get from state SYN B to state FIN1 B, two
messages — an ACK from E0 and a FIN from E1 — are needed. These messages are
independent and thus can arrive in either order at the firewall. If we look how actual

91

10.1. DISCUSSION CHAPTER 10. SUMMARY

NEW

SYN_A

SYN_B a

ESTABLISHED
b c

FIN1_AFIN1_B d e

- Start E0
- no simultaneous open
- non-core input is ignored
- Input alphabet:
 2 E0 -> M: S 3 E1 -> M: S
 4 E0 -> M: SA 5 E1 -> M: SA
 6 E0 -> M: A 7 E1 -> M: A
 8 E0 -> M: F 9 E1 -> M: F

f FIN2_AFIN2_B

CLOSE_B CLOSE_A

NEW

g

 2 / 2

5 / 5

 5 / 5

 9 / 9

 9 / 9

9 / 9

 9 / 9

9 / 9

 9 / 9

 6 / 6

 6 / 6

 6 / 6

 6 / 6

 6 / 6
 6 / 6

 6 / 6
 6 / 6

6 / 6

9 / 9

 7 / 7

 7 / 7

7 / 7

7 / 7

8 / 8

8 / 8

8 / 8

 8 / 8

 8 / 8

 7 / 7

Figure 10.1: Midpoint automaton for TCP

firewalls handle this, we see that the intended order of sending the ACK before the FIN
leads to the same result, but that the opposite order ends in state ESTABLISHED, leaving
us without an explanation why the FIN needs to be allowed in state SYN B.

Our construction builds permissive midpoint automata. This reflects our decision not
to penalise protocol-conform endpoints for actions of the environment (here the network).
But it is a simple matter to modify the approach to construct restrictive midpoint au-
tomata. These can be built by stopping — i.e. dropping everything from then on — at
states that consist of more than one triple. But building a restrictive automaton makes
little sense with current protocols: It requires dropping more or less everything, as there
will be uncertainty already after a few packets.

92

CHAPTER 10. SUMMARY 10.2. CONCLUSION

10.2 Conclusion

In the second part of this thesis we attacked the problem we encountered in the first
part: missing midpoint specifications. To be able to test a firewall, we need specifications
telling us how a certain protocol should be handled by a firewall. As this problem was not
being addressed before, we analysed the problem and developed an algorithm to convert
endpoint protocol specifications to midpoint protocol specification.

For part two, our contributions are an analysis of why midpoints must behave, and
hence be specified, differently from endpoints, what the implications of a lack of such
specifications are, and a solution for this problem. Our solution should be of interest to at
least two groups: those building midpoints and those analysing (e.g. testing) them. Both
groups will benefit from having a general method to systematically construct midpoint
specifications from those for endpoints.

10.3 Future Work

The construction presented has two minor limitations: it requires that the endpoint au-
tomata do not have loops without input and it does not take duplication in the network
into account. The first point is unproblematic, as loops without input should not be
present since these would enable one endpoint to loop infinitely without communicating
(only “talking” not “listening”) with the other endpoint.

The problem of duplicates (or retransmission), we believe, should be solved indepen-
dent of protocol automata. The midpoint should remember the packets seen (unique id)
and its decision, and then apply the same decision to duplicates received later.

An important step will be to go for other types of midpoints, for example firewalls doing
NAT or protocol gateways. For this, our solution must be changed such that additional
midpoint functions can be specified and are incorporated.

93

Part III

Conclusion

95

Chapter 11

Conclusion and Future Work

The aim of this thesis was to develop a specification-based firewall testing method. The
problem to be solved is the one of not being able to determine – or only with great effort
of experts – if a firewall accomplishes its job correctly. What “correct” means is different
for each firewall, it depends on the corresponding security policy.

As already shown, we have achieved our goal. In this chapter we now want to look at
our achievements from an overall point of view.

11.1 Conclusion

Specification-based firewall testing is a novel, exciting and important field. As we have
shown in this thesis, it not only consists of testing the conformance of a firewall configura-
tion to a given policy, but also of testing the firewall implementation for correctness. Only
if both the firewall configuration conforms to the policy and the firewall implementation
is correct, the firewall can be said to implement the policy.

One might say that the above statement is trivially true. Unfortunately it seems not
to be so clear: None of the few earlier methods and tools for firewall testing did check
both the firewall configuration and the firewall implementation.

Midpoint automata What came as a surprise to us was that it was unclear how a
correct firewall implementation should look like. Although several companies are building
or testing firewall implementations, there existed no specifications for midpoint (firewall)
protocol automata.

As there cannot be a test without a specification, we developed an algorithm for the
generation of midpoint automata from endpoint automata (see Part II). This algorithm
builds on our analysis of the differences between endpoints and midpoints. We have proven
that the midpoint automata, resulting from our algorithm, only accept those messages
that could have resulted from protocol-conform endpoints.

With our algorithm, we contribute to a common understanding between midpoint
vendors, midpoint testers and midpoint users. Security is only possible if the users are

97

11.1. CONCLUSION CHAPTER 11. CONCLUSION AND FUTURE WORK

aware of the capabilities of their firewalls, and the firewall implementation is correct.
Only if the midpoint vendors implement what the midpoint users need, the midpoints are
useful. The midpoint testers play an important role here: They have to test, on behalf of
the users, that the midpoint vendors did their job correctly.

Our contributions for this part are an analysis of why midpoints must behave, and
hence be specified, differently from endpoints, an analysis of the implications of a lack of
such specifications, and a solution for this problem.

Specification-based firewall testing The main solution to our research question is
presented in Part I. We start by defining a language for the formal specification of network
security policies. To keep the policy high-level and stable, the low-level details must be
specified separately from the policy. In this way, we achieved that the policy can be
understood by the accountable managers, while the low-level details can be maintained
by qualified technical personnel.

Starting from our specification, we show how to generate test tuples that test the
conformance of a firewall configuration to the policy. These test tuples are then used
to instantiate abstract test cases (corresponding to a test of the implementation) to get
concrete test cases. By choosing this two-phase approach, we achieved a clear distinction
between configuration and implementation testing. Using our method, a tester can decide
whether he wants to test the firewall configuration (e.g. after a change of the rules or
the policy), the firewall implementation (e.g. of a new firewall version) or both. Another
advantage of this approach is that existing test cases can be reused. The work of generating
abstract test cases for a certain protocol, for example, has only to be done once.

We showed that our method, implemented in a prototype tool, is able to find errors,
both in the firewall configuration and the firewall implementation. Note that we cannot
prove the absence of errors: “Program testing can be used to show the presence of bugs,
but never to show their absence!”[Dij70].

Our contribution for this part is a product-independent, automated approach for fire-
wall conformance testing. It represents the first approach for the automated conformance
testing of firewalls and the first firewall testing method that tests both the firewall con-
figuration and the firewall implementation.

Success Combining both parts of this thesis, we attained our goal. The interest in our
work, by banks and military, shows that we solved an important problem – the one of not
being able to check (or only with a great effort of experts) if ones defense (by firewalls) is
working as expected – and therefore our goal was right:w .

The validation of our approach shows that it is easily applicable, fast, and able to find
errors. Therefore we can say that in principle our approach is useful. To use our approach
in corporate environments, the usability of our prototype tool needs to be improved.

98

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.2. FUTURE WORK

11.2 Future Work

Detailed future work was already discussed in Sections 5.3.4, 7.2, and 10.3. Here we want
to summarise the most important issues.

Adaptation to the application layer During the last years, a shift from packet filters
to application layer firewalls can be observed. This means that, to be of long-term use, a
firewall testing method needs to be able to handle application layer firewalls.

To adapt our method to the application layer, two main issues need to be solved.
On one hand, our formal policy language needs to be adapted such that the interaction
between, and the content of, protocols can be specified. On the other hand, fwtest must
be adapted such that it can craft messages for any protocol.

Industrial-strength tool The intention behind our prototype tool was validation. This
means that usability and nice GUIs were not as important as for an industrial-strength
tool. Therefore, to use the tool in corporate environments, its usability and appearance
have to be improved. What this means in detail, has already been discussed in subsec-
tion 5.3.4.

Case studies In section 5.3 we evaluated and validated our approach. To obtain a
more detailed view on the pros and cons of our approach, more case studies are necessary.
Every environment has its own demands and its own special cases. Case studies in different
environments – different businesses (banking, universities, and so on) as well as different
company sizes – will help in improving our method and make it widely applicable.

99

Part IV

Appendix

101

Appendix A

Validation – Test Tuples

1 /∗∗
2 ∗ $Id : a rma s u i s s e t e s t t up l e s . txt 32816 2006−11−30 12 : 24 : 57Z dsenn $
3 ∗
4 ∗ armasui sse−Fa l l s t ud i e −− t e s t tup l e s
5 ∗/
6 /∗ (a , b , c , d) = e x p l i z i t e t e s t tup l e s
7 (e , f , g , h) = imp l i z i t e t e s t tup l e s
8 ∗/
9

10
11
12 /∗
13 ∗ −> LAN−BROADCAST DROP ∗
14 ∗/
15
16
17
18 /∗
19 XP IP RANGE1−3 −> FILE SERVER ACCEPT xxx , web
20 ∗/
21 (1 0 . 2 0 . 4 8 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
22 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
23 (1 0 . 2 0 . 4 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
24 (1 0 . 2 0 . 4 7 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
25 (1 0 . 2 0 . 5 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
26
27 (1 0 . 2 0 . 4 8 . 2 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
28 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
29 (1 0 . 2 0 . 4 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
30
31 (1 0 . 2 0 . 4 8 . 2 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
32 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
33 (1 0 . 2 0 . 4 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
34
35
36 (1 0 . 2 0 . 5 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
37 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
38 (1 0 . 2 0 . 5 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
39 (1 0 . 2 0 . 5 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
40 (1 0 . 2 0 . 5 2 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
41
42 (1 0 . 2 0 . 5 1 . 2 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
43 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
44 (1 0 . 2 0 . 5 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
45

103

APPENDIX A. VALIDATION – TEST TUPLES

46 (1 0 . 2 0 . 5 1 . 2 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
47 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
48 (1 0 . 2 0 . 5 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
49
50
51 (1 0 . 2 0 . 6 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
52 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
53 (1 0 . 2 0 . 6 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
54 (1 0 . 2 0 . 5 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
55 (1 0 . 2 0 . 6 2 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
56
57 (1 0 . 2 0 . 6 0 . 2 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
58 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
59 (1 0 . 2 0 . 6 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
60
61 (1 0 . 2 0 . 6 0 . 2 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
62 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
63 (1 0 . 2 0 . 6 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
64
65
66 (1 0 . 2 0 . 4 8 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
67 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
68 (1 0 . 2 0 . 4 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
69 (1 0 . 2 0 . 4 7 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , http , DROP)
70 (1 0 . 2 0 . 5 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , http , DROP)
71
72 (1 0 . 2 0 . 4 8 . 2 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
73 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
74 (1 0 . 2 0 . 4 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
75
76 (1 0 . 2 0 . 4 8 . 2 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
77 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
78 (1 0 . 2 0 . 4 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
79
80
81 (1 0 . 2 0 . 5 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
82 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
83 (1 0 . 2 0 . 5 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
84 (1 0 . 2 0 . 5 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , http , DROP)
85 (1 0 . 2 0 . 5 2 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , http , DROP)
86
87 (1 0 . 2 0 . 5 1 . 2 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
88 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
89 (1 0 . 2 0 . 5 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
90
91 (1 0 . 2 0 . 5 1 . 2 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
92 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
93 (1 0 . 2 0 . 5 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
94
95
96 (1 0 . 2 0 . 6 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
97 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
98 (1 0 . 2 0 . 6 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
99 (1 0 . 2 0 . 5 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , http , DROP)

100 (1 0 . 2 0 . 6 2 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , http , DROP)
101
102 (1 0 . 2 0 . 6 0 . 2 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
103 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
104 (1 0 . 2 0 . 6 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 0 , http , DROP)
105
106 (1 0 . 2 0 . 6 0 . 2 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
107 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
108 (1 0 . 2 0 . 6 1 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 2 , http , DROP)
109

104

APPENDIX A. VALIDATION – TEST TUPLES

110
111 /∗
112 JMA CLIENT −> FILE SERVER ACCEPT data , xxx
113 ∗/
114 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 1 , f tp , ACCEPT)
115 (1 0 . 2 0 . 7 1 . 5 9 , 1 0 . 2 0 . 3 0 . 1 1 , f tp , DROP)
116 (1 0 . 2 0 . 7 1 . 6 1 , 1 0 . 2 0 . 3 0 . 1 1 , f tp , DROP)
117
118 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 0 , f tp , DROP)
119 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 2 , f tp , DROP)
120
121
122 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
123 (1 0 . 2 0 . 7 1 . 5 9 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
124 (1 0 . 2 0 . 7 1 . 6 1 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
125
126 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 0 , NetBios , DROP)
127 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 2 , NetBios , DROP)
128
129
130
131 /∗
132 ∗ −> PRINT SERVER ACCEPT cont r o l
133 ∗
134 ∗/
135 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
136 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
137 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
138 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
139 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
140 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
141 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
142 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
143 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
144 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
145 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
146 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
147 (172 . 20 . 13 . 12 8 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
148 (172 . 20 . 13 . 12 8 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
149 (172 . 20 . 13 . 12 8 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
150 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
151 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
152 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
153 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
154 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
155 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
156 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
157 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
158 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
159 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
160 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
161 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
162 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
163 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
164 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
165 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
166 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
167 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
168 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
169 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
170 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
171 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
172 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
173 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)

105

APPENDIX A. VALIDATION – TEST TUPLES

174 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
175 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
176 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
177 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
178 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
179 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
180 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
181 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
182 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
183 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
184 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
185 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
186 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
187 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 5 , icmp , DROP)
188 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 1 7 , icmp , DROP)
189
190
191
192 /∗
193 SAP IP RANGE −> PRINT SERVER ACCEPT pr i n t
194 ∗/
195 (1 9 2 . 1 6 8 . 6 6 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , ACCEPT)
196 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , ACCEPT)
197 (192 . 168 . 66 . 254 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , ACCEPT)
198 (192 . 168 . 65 . 254 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , DROP)
199 (1 9 2 . 1 6 8 . 6 7 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , DROP)
200
201 (1 9 2 . 1 6 8 . 6 6 . 2 , 1 0 . 2 0 . 3 0 . 1 5 , pr inter , DROP)
202 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 1 5 , pr inter , DROP)
203 (192 . 168 . 66 . 254 , 1 0 . 2 0 . 3 0 . 1 5 , pr inter , DROP)
204
205 (1 9 2 . 1 6 8 . 6 6 . 2 , 1 0 . 2 0 . 3 0 . 1 7 , pr inter , DROP)
206 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 1 7 , pr inter , DROP)
207 (192 . 168 . 66 . 254 , 1 0 . 2 0 . 3 0 . 1 7 , pr inter , DROP)
208
209
210
211 /∗
212 TRH CLIENT −> TRH SERVER ACCEPT xxx
213 ∗/
214 (1 0 . 2 0 . 9 9 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , ACCEPT)
215 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , ACCEPT)
216 (1 0 . 2 0 . 9 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , ACCEPT)
217 (1 0 . 2 0 . 9 8 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , DROP)
218 (1 0 . 2 0 . 1 0 0 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , DROP)
219
220 (1 0 . 2 0 . 9 9 . 2 , 1 0 . 2 0 . 3 0 . 2 5 , NetBios , DROP)
221 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 5 , NetBios , DROP)
222 (1 0 . 2 0 . 9 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 5 , NetBios , DROP)
223
224 (1 0 . 2 0 . 9 9 . 2 , 1 0 . 2 0 . 3 0 . 2 7 , NetBios , DROP)
225 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 7 , NetBios , DROP)
226 (1 0 . 2 0 . 9 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 7 , NetBios , DROP)
227
228
229
230 /∗
231 ∗ −> WIKI SERVER ACCEPT web , sec−web
232 ∗/
233 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
234 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
235 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
236 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
237 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)

106

APPENDIX A. VALIDATION – TEST TUPLES

238 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
239 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
240 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
241 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
242 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
243 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
244 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
245 (172 . 20 . 13 . 12 8 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
246 (172 . 20 . 13 . 12 8 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
247 (172 . 20 . 13 . 12 8 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
248 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 6 , http , ACCEPT)
249 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 5 , http , DROP)
250 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 7 , http , DROP)
251 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
252 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
253 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
254 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
255 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
256 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
257 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
258 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
259 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
260 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
261 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
262 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
263 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
264 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
265 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
266 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
267 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
268 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
269 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
270 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
271 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
272 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
273 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
274 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
275 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
276 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
277 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
278 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
279 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
280 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
281 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
282 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
283 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
284 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
285 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 4 , http , DROP)
286 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 6 , http , DROP)
287
288
289 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
290 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
291 (192 . 168 . 66 . 128 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
292 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
293 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
294 (192 . 168 . 33 . 128 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
295 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
296 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
297 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
298 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
299 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
300 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
301 (172 . 20 . 13 . 12 8 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)

107

APPENDIX A. VALIDATION – TEST TUPLES

302 (172 . 20 . 13 . 128 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
303 (172 . 20 . 13 . 128 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
304 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 6 , https , ACCEPT)
305 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 5 , https , DROP)
306 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 1 7 , https , DROP)
307 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
308 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
309 (1 0 . 2 0 . 9 9 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
310 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
311 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
312 (1 0 . 2 0 . 7 1 . 6 0 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
313 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
314 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
315 (1 0 . 2 0 . 6 0 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
316 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
317 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
318 (1 0 . 2 0 . 5 1 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
319 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
320 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
321 (1 0 . 2 0 . 4 8 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
322 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
323 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
324 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
325 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
326 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
327 (1 0 . 2 0 . 3 0 . 4 5 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
328 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
329 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
330 (1 0 . 2 0 . 3 0 . 2 6 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
331 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
332 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
333 (1 0 . 2 0 . 3 0 . 1 6 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
334 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
335 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
336 (1 0 . 2 0 . 3 0 . 1 1 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
337 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
338 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
339 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
340 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
341 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 4 , https , DROP)
342 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 4 6 , https , DROP)
343
344
345
346 /∗
347 XP IP RANGE −> LAN ACCEPT ∗
348 ∗/
349 (1 0 . 2 0 . 2 4 . 2 , 1 0 . 2 0 . 3 0 . 2 , f tp , ACCEPT)
350 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 2 , f tp , ACCEPT)
351 (1 0 . 2 0 . 2 5 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , f tp , ACCEPT)
352 (1 0 . 2 0 . 2 3 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , f tp , DROP)
353 (1 0 . 2 0 . 2 6 . 2 , 1 0 . 2 0 . 3 0 . 2 , f tp , DROP)
354 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 128 , f tp , ACCEPT)
355 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 128 , f tp , ACCEPT)
356 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 128 , f tp , ACCEPT)
357 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 128 , f tp , DROP)
358 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 128 , f tp , DROP)
359 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 254 , f tp , ACCEPT)
360 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 254 , f tp , ACCEPT)
361 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 254 , f tp , ACCEPT)
362 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 254 , f tp , DROP)
363 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 254 , f tp , DROP)
364
365

108

APPENDIX A. VALIDATION – TEST TUPLES

366 (1 0 . 2 0 . 2 4 . 2 , 1 0 . 2 0 . 3 0 . 2 , NetBios , ACCEPT)
367 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 2 , NetBios , ACCEPT)
368 (1 0 . 2 0 . 2 5 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , NetBios , ACCEPT)
369 (1 0 . 2 0 . 2 3 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , NetBios , DROP)
370 (1 0 . 2 0 . 2 6 . 2 , 1 0 . 2 0 . 3 0 . 2 , NetBios , DROP)
371 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 128 , NetBios , ACCEPT)
372 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 128 , NetBios , ACCEPT)
373 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 128 , NetBios , ACCEPT)
374 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 128 , NetBios , DROP)
375 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 128 , NetBios , DROP)
376 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 254 , NetBios , ACCEPT)
377 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 254 , NetBios , ACCEPT)
378 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 254 , NetBios , ACCEPT)
379 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 254 , NetBios , DROP)
380 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 254 , NetBios , DROP)
381
382
383 (1 0 . 2 0 . 2 4 . 2 , 1 0 . 2 0 . 3 0 . 2 , http , ACCEPT)
384 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 2 , http , ACCEPT)
385 (1 0 . 2 0 . 2 5 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , http , ACCEPT)
386 (1 0 . 2 0 . 2 3 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , http , DROP)
387 (1 0 . 2 0 . 2 6 . 2 , 1 0 . 2 0 . 3 0 . 2 , http , DROP)
388 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 128 , http , ACCEPT)
389 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 128 , http , ACCEPT)
390 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 128 , http , ACCEPT)
391 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 128 , http , DROP)
392 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 128 , http , DROP)
393 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 254 , http , ACCEPT)
394 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 254 , http , ACCEPT)
395 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 254 , http , ACCEPT)
396 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 254 , http , DROP)
397 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 254 , http , DROP)
398
399
400 (1 0 . 2 0 . 2 4 . 2 , 1 0 . 2 0 . 3 0 . 2 , https , ACCEPT)
401 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 2 , https , ACCEPT)
402 (1 0 . 2 0 . 2 5 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , https , ACCEPT)
403 (1 0 . 2 0 . 2 3 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , https , DROP)
404 (1 0 . 2 0 . 2 6 . 2 , 1 0 . 2 0 . 3 0 . 2 , https , DROP)
405 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 128 , https , ACCEPT)
406 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 128 , https , ACCEPT)
407 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 128 , https , ACCEPT)
408 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 128 , https , DROP)
409 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 128 , https , DROP)
410 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 254 , https , ACCEPT)
411 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 254 , https , ACCEPT)
412 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 254 , https , ACCEPT)
413 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 254 , https , DROP)
414 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 254 , https , DROP)
415
416
417 (1 0 . 2 0 . 2 4 . 2 , 1 0 . 2 0 . 3 0 . 2 , pr inter , ACCEPT)
418 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 2 , pr inter , ACCEPT)
419 (1 0 . 2 0 . 2 5 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , pr inter , ACCEPT)
420 (1 0 . 2 0 . 2 3 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , pr inter , DROP)
421 (1 0 . 2 0 . 2 6 . 2 , 1 0 . 2 0 . 3 0 . 2 , pr inter , DROP)
422 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 128 , pr inter , ACCEPT)
423 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 128 , pr inter , ACCEPT)
424 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 128 , pr inter , ACCEPT)
425 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 128 , pr inter , DROP)
426 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 128 , pr inter , DROP)
427 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 254 , pr inter , ACCEPT)
428 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 254 , pr inter , ACCEPT)
429 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 254 , pr inter , ACCEPT)

109

APPENDIX A. VALIDATION – TEST TUPLES

430 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 254 , pr inter , DROP)
431 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 254 , pr inter , DROP)
432
433
434 (1 0 . 2 0 . 2 4 . 2 , 1 0 . 2 0 . 3 0 . 2 , icmp , ACCEPT)
435 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 2 , icmp , ACCEPT)
436 (1 0 . 2 0 . 2 5 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , icmp , ACCEPT)
437 (1 0 . 2 0 . 2 3 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , icmp , DROP)
438 (1 0 . 2 0 . 2 6 . 2 , 1 0 . 2 0 . 3 0 . 2 , icmp , DROP)
439 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 128 , icmp , ACCEPT)
440 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 128 , icmp , ACCEPT)
441 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 128 , icmp , ACCEPT)
442 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 128 , icmp , DROP)
443 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 128 , icmp , DROP)
444 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 254 , icmp , ACCEPT)
445 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 254 , icmp , ACCEPT)
446 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 254 , icmp , ACCEPT)
447 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 254 , icmp , DROP)
448 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 254 , icmp , DROP)
449
450
451 (1 0 . 2 0 . 2 4 . 2 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , ACCEPT)
452 (1 0 . 2 0 . 2 4 . 2 3 1 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , ACCEPT)
453 (1 0 . 2 0 . 2 5 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , ACCEPT)
454 (1 0 . 2 0 . 2 3 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , DROP)
455 (1 0 . 2 0 . 2 6 . 2 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , DROP)
456 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 128 , t e l n e t , ACCEPT)
457 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 128 , t e l n e t , ACCEPT)
458 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 128 , t e l n e t , ACCEPT)
459 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 128 , t e l n e t , DROP)
460 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 128 , t e l n e t , DROP)
461 (1 0 . 2 0 . 2 4 . 2 , 10 . 20 . 30 . 254 , t e l n e t , ACCEPT)
462 (1 0 . 2 0 . 2 4 . 2 3 1 , 10 . 20 . 30 . 254 , t e l n e t , ACCEPT)
463 (1 0 . 2 0 . 2 5 . 2 5 4 , 10 . 20 . 30 . 254 , t e l n e t , ACCEPT)
464 (1 0 . 2 0 . 2 3 . 2 5 4 , 10 . 20 . 30 . 254 , t e l n e t , DROP)
465 (1 0 . 2 0 . 2 6 . 2 , 10 . 20 . 30 . 254 , t e l n e t , DROP)
466
467
468
469 /∗
470 SCANNER0−2 −> LAN DROP ∗
471 ∗/
472 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 2 , f tp , DROP)
473 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 2 , f tp , DROP)
474 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 2 , f tp , DROP)
475 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 128 , f tp , DROP)
476 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 128 , f tp , DROP)
477 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 128 , f tp , DROP)
478 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 254 , f tp , DROP)
479 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 254 , f tp , DROP)
480 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 254 , f tp , DROP)
481
482
483 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 2 , NetBios , DROP)
484 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 2 , NetBios , DROP)
485 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 2 , NetBios , DROP)
486 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 128 , NetBios , DROP)
487 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 128 , NetBios , DROP)
488 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 128 , NetBios , DROP)
489 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 254 , NetBios , DROP)
490 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 254 , NetBios , DROP)
491 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 254 , NetBios , DROP)
492
493

110

APPENDIX A. VALIDATION – TEST TUPLES

494 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 2 , http , DROP)
495 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 2 , http , DROP)
496 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 2 , http , DROP)
497 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 128 , http , DROP)
498 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 128 , http , DROP)
499 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 128 , http , DROP)
500 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 254 , http , DROP)
501 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 254 , http , DROP)
502 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 254 , http , DROP)
503
504
505 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 2 , https , DROP)
506 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 2 , https , DROP)
507 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 2 , https , DROP)
508 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 128 , https , DROP)
509 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 128 , https , DROP)
510 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 128 , https , DROP)
511 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 254 , https , DROP)
512 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 254 , https , DROP)
513 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 254 , https , DROP)
514
515
516 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 2 , pr inter , DROP)
517 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 2 , pr inter , DROP)
518 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 2 , pr inter , DROP)
519 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 128 , pr inter , DROP)
520 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 128 , pr inter , DROP)
521 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 128 , pr inter , DROP)
522 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 254 , pr inter , DROP)
523 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 254 , pr inter , DROP)
524 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 254 , pr inter , DROP)
525
526
527 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 2 , icmp , DROP)
528 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 2 , icmp , DROP)
529 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 2 , icmp , DROP)
530 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 128 , icmp , DROP)
531 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 128 , icmp , DROP)
532 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 128 , icmp , DROP)
533 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 254 , icmp , DROP)
534 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 254 , icmp , DROP)
535 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 254 , icmp , DROP)
536
537
538 (172 . 100 . 200 . 19 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , DROP)
539 (172 . 100 . 100 . 97 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , DROP)
540 (1 0 . 3 3 . 0 . 9 9 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , DROP)
541 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 128 , t e l n e t , DROP)
542 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 128 , t e l n e t , DROP)
543 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 128 , t e l n e t , DROP)
544 (172 . 100 . 200 . 19 , 10 . 20 . 30 . 254 , t e l n e t , DROP)
545 (172 . 100 . 100 . 97 , 10 . 20 . 30 . 254 , t e l n e t , DROP)
546 (1 0 . 3 3 . 0 . 9 9 , 10 . 20 . 30 . 254 , t e l n e t , DROP)
547
548
549
550 /∗
551 LAN −> !NOTALLOWED ACCEPT ∗
552 ∗/
553 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 2 , f tp , DROP)
554 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 2 , f tp , DROP)
555 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 2 , f tp , DROP)
556 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 128 , f tp , DROP)
557 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 128 , f tp , DROP)

111

APPENDIX A. VALIDATION – TEST TUPLES

558 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 128 , f tp , DROP)
559 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 254 , f tp , DROP)
560 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 254 , f tp , DROP)
561 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 254 , f tp , DROP)
562 (1 0 . 2 0 . 3 0 . 2 , 1 7 2 . 2 0 . 1 3 . 2 , f tp , DROP)
563 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 7 2 . 2 0 . 1 3 . 2 , f tp , DROP)
564 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 7 2 . 2 0 . 1 3 . 2 , f tp , DROP)
565 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 128 , f tp , DROP)
566 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 128 , f tp , DROP)
567 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 128 , f tp , DROP)
568 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 254 , f tp , DROP)
569 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 254 , f tp , DROP)
570 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 254 , f tp , DROP)
571 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 2 , f tp , ACCEPT)
572 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 2 , f tp , ACCEPT)
573 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 128 , f tp , ACCEPT)
574 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 128 , f tp , ACCEPT)
575 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 254 , f tp , ACCEPT)
576 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 254 , f tp , ACCEPT)
577
578 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 66 . 128 , f tp , ACCEPT)
579 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 66 . 128 , f tp , ACCEPT)
580 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 66 . 128 , f tp , ACCEPT)
581 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 66 . 128 , f tp , DROP)
582 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 66 . 128 , f tp , DROP)
583 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 200 . 19 , f tp , ACCEPT)
584 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 200 . 19 , f tp , ACCEPT)
585 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 200 . 19 , f tp , ACCEPT)
586 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 200 . 19 , f tp , DROP)
587 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 200 . 19 , f tp , DROP)
588 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 100 . 97 , f tp , ACCEPT)
589 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 100 . 97 , f tp , ACCEPT)
590 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 100 . 97 , f tp , ACCEPT)
591 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 100 . 97 , f tp , DROP)
592 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 100 . 97 , f tp , DROP)
593 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 3 3 . 0 . 9 9 , f tp , ACCEPT)
594 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 3 3 . 0 . 9 9 , f tp , ACCEPT)
595 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , f tp , ACCEPT)
596 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , f tp , DROP)
597 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 3 3 . 0 . 9 9 , f tp , DROP)
598 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 99 . 128 , f tp , ACCEPT)
599 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 99 . 128 , f tp , ACCEPT)
600 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 99 . 128 , f tp , ACCEPT)
601 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 99 . 128 , f tp , DROP)
602 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 99 . 128 , f tp , DROP)
603 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , f tp , ACCEPT)
604 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 7 1 . 6 0 , f tp , ACCEPT)
605 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , f tp , ACCEPT)
606 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , f tp , DROP)
607 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , f tp , DROP)
608 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 60 . 231 , f tp , ACCEPT)
609 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 60 . 231 , f tp , ACCEPT)
610 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 60 . 231 , f tp , ACCEPT)
611 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 60 . 231 , f tp , DROP)
612 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 60 . 231 , f tp , DROP)
613 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 51 . 128 , f tp , ACCEPT)
614 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 51 . 128 , f tp , ACCEPT)
615 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 51 . 128 , f tp , ACCEPT)
616 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 51 . 128 , f tp , DROP)
617 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 51 . 128 , f tp , DROP)
618 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 48 . 231 , f tp , ACCEPT)
619 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 48 . 231 , f tp , ACCEPT)
620 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 48 . 231 , f tp , ACCEPT)
621 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 48 . 231 , f tp , DROP)

112

APPENDIX A. VALIDATION – TEST TUPLES

622 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 48 . 231 , f tp , DROP)
623 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 30 . 254 , f tp , ACCEPT)
624 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 30 . 254 , f tp , ACCEPT)
625 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 30 . 254 , f tp , ACCEPT)
626 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 30 . 254 , f tp , DROP)
627 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 30 . 254 , f tp , DROP)
628 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , f tp , ACCEPT)
629 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , f tp , ACCEPT)
630 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , f tp , ACCEPT)
631 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , f tp , DROP)
632 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , f tp , DROP)
633 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , f tp , ACCEPT)
634 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 6 , f tp , ACCEPT)
635 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , f tp , ACCEPT)
636 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , f tp , DROP)
637 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , f tp , DROP)
638 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , f tp , ACCEPT)
639 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , f tp , ACCEPT)
640 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , f tp , ACCEPT)
641 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , f tp , DROP)
642 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , f tp , DROP)
643 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , f tp , ACCEPT)
644 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , f tp , ACCEPT)
645 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , f tp , ACCEPT)
646 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , f tp , DROP)
647 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , f tp , DROP)
648 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 , f tp , ACCEPT)
649 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 , f tp , ACCEPT)
650 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , f tp , ACCEPT)
651 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , f tp , DROP)
652 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 , f tp , DROP)
653 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 24 . 231 , f tp , ACCEPT)
654 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 24 . 231 , f tp , ACCEPT)
655 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 24 . 231 , f tp , ACCEPT)
656 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 24 . 231 , f tp , DROP)
657 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 24 . 231 , f tp , DROP)
658
659
660 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 2 , NetBios , DROP)
661 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 2 , NetBios , DROP)
662 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 2 , NetBios , DROP)
663 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 128 , NetBios , DROP)
664 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 128 , NetBios , DROP)
665 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 128 , NetBios , DROP)
666 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 254 , NetBios , DROP)
667 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 254 , NetBios , DROP)
668 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 254 , NetBios , DROP)
669 (1 0 . 2 0 . 3 0 . 2 , 1 7 2 . 2 0 . 1 3 . 2 , NetBios , DROP)
670 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 7 2 . 2 0 . 1 3 . 2 , NetBios , DROP)
671 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 7 2 . 2 0 . 1 3 . 2 , NetBios , DROP)
672 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 128 , NetBios , DROP)
673 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 128 , NetBios , DROP)
674 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 128 , NetBios , DROP)
675 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 254 , NetBios , DROP)
676 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 254 , NetBios , DROP)
677 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 254 , NetBios , DROP)
678 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 2 , NetBios , ACCEPT)
679 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 2 , NetBios , ACCEPT)
680 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 128 , NetBios , ACCEPT)
681 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 128 , NetBios , ACCEPT)
682 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 254 , NetBios , ACCEPT)
683 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 254 , NetBios , ACCEPT)
684
685 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 66 . 128 , NetBios , ACCEPT)

113

APPENDIX A. VALIDATION – TEST TUPLES

686 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 66 . 128 , NetBios , ACCEPT)
687 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 66 . 128 , NetBios , ACCEPT)
688 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 66 . 128 , NetBios , DROP)
689 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 66 . 128 , NetBios , DROP)
690 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 200 . 19 , NetBios , ACCEPT)
691 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 200 . 19 , NetBios , ACCEPT)
692 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 200 . 19 , NetBios , ACCEPT)
693 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 200 . 19 , NetBios , DROP)
694 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 200 . 19 , NetBios , DROP)
695 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 100 . 97 , NetBios , ACCEPT)
696 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 100 . 97 , NetBios , ACCEPT)
697 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 100 . 97 , NetBios , ACCEPT)
698 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 100 . 97 , NetBios , DROP)
699 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 100 . 97 , NetBios , DROP)
700 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 3 3 . 0 . 9 9 , NetBios , ACCEPT)
701 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 3 3 . 0 . 9 9 , NetBios , ACCEPT)
702 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , NetBios , ACCEPT)
703 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , NetBios , DROP)
704 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 3 3 . 0 . 9 9 , NetBios , DROP)
705 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 99 . 128 , NetBios , ACCEPT)
706 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 99 . 128 , NetBios , ACCEPT)
707 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 99 . 128 , NetBios , ACCEPT)
708 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 99 . 128 , NetBios , DROP)
709 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 99 . 128 , NetBios , DROP)
710 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , NetBios , ACCEPT)
711 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 7 1 . 6 0 , NetBios , ACCEPT)
712 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , NetBios , ACCEPT)
713 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , NetBios , DROP)
714 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , NetBios , DROP)
715 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 60 . 231 , NetBios , ACCEPT)
716 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 60 . 231 , NetBios , ACCEPT)
717 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 60 . 231 , NetBios , ACCEPT)
718 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 60 . 231 , NetBios , DROP)
719 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 60 . 231 , NetBios , DROP)
720 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 51 . 128 , NetBios , ACCEPT)
721 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 51 . 128 , NetBios , ACCEPT)
722 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 51 . 128 , NetBios , ACCEPT)
723 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 51 . 128 , NetBios , DROP)
724 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 51 . 128 , NetBios , DROP)
725 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 48 . 231 , NetBios , ACCEPT)
726 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 48 . 231 , NetBios , ACCEPT)
727 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 48 . 231 , NetBios , ACCEPT)
728 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 48 . 231 , NetBios , DROP)
729 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 48 . 231 , NetBios , DROP)
730 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 30 . 254 , NetBios , ACCEPT)
731 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 30 . 254 , NetBios , ACCEPT)
732 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 30 . 254 , NetBios , ACCEPT)
733 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 30 . 254 , NetBios , DROP)
734 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 30 . 254 , NetBios , DROP)
735 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , NetBios , ACCEPT)
736 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , NetBios , ACCEPT)
737 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , NetBios , ACCEPT)
738 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , NetBios , DROP)
739 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , NetBios , DROP)
740 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , ACCEPT)
741 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , ACCEPT)
742 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , ACCEPT)
743 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , DROP)
744 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , NetBios , DROP)
745 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , NetBios , ACCEPT)
746 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , NetBios , ACCEPT)
747 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , NetBios , ACCEPT)
748 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , NetBios , DROP)
749 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , NetBios , DROP)

114

APPENDIX A. VALIDATION – TEST TUPLES

750 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
751 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
752 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , ACCEPT)
753 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
754 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , NetBios , DROP)
755 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 , NetBios , ACCEPT)
756 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 , NetBios , ACCEPT)
757 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , NetBios , ACCEPT)
758 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , NetBios , DROP)
759 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 , NetBios , DROP)
760 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 24 . 231 , NetBios , ACCEPT)
761 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 24 . 231 , NetBios , ACCEPT)
762 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 24 . 231 , NetBios , ACCEPT)
763 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 24 . 231 , NetBios , DROP)
764 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 24 . 231 , NetBios , DROP)
765
766
767 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 2 , http , DROP)
768 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 2 , http , DROP)
769 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 2 , http , DROP)
770 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 128 , http , DROP)
771 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 128 , http , DROP)
772 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 128 , http , DROP)
773 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 254 , http , DROP)
774 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 254 , http , DROP)
775 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 254 , http , DROP)
776 (1 0 . 2 0 . 3 0 . 2 , 1 7 2 . 2 0 . 1 3 . 2 , http , DROP)
777 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 7 2 . 2 0 . 1 3 . 2 , http , DROP)
778 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 7 2 . 2 0 . 1 3 . 2 , http , DROP)
779 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 128 , http , DROP)
780 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 128 , http , DROP)
781 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 128 , http , DROP)
782 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 254 , http , DROP)
783 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 254 , http , DROP)
784 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 254 , http , DROP)
785 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 2 , http , ACCEPT)
786 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 2 , http , ACCEPT)
787 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 128 , http , ACCEPT)
788 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 128 , http , ACCEPT)
789 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 254 , http , ACCEPT)
790 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 254 , http , ACCEPT)
791
792 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 66 . 128 , http , ACCEPT)
793 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 66 . 128 , http , ACCEPT)
794 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 66 . 128 , http , ACCEPT)
795 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 66 . 128 , http , DROP)
796 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 66 . 128 , http , DROP)
797 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 200 . 19 , http , ACCEPT)
798 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 200 . 19 , http , ACCEPT)
799 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 200 . 19 , http , ACCEPT)
800 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 200 . 19 , http , DROP)
801 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 200 . 19 , http , DROP)
802 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 100 . 97 , http , ACCEPT)
803 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 100 . 97 , http , ACCEPT)
804 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 100 . 97 , http , ACCEPT)
805 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 100 . 97 , http , DROP)
806 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 100 . 97 , http , DROP)
807 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 3 3 . 0 . 9 9 , http , ACCEPT)
808 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 3 3 . 0 . 9 9 , http , ACCEPT)
809 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , http , ACCEPT)
810 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , http , DROP)
811 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 3 3 . 0 . 9 9 , http , DROP)
812 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 99 . 128 , http , ACCEPT)
813 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 99 . 128 , http , ACCEPT)

115

APPENDIX A. VALIDATION – TEST TUPLES

814 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 99 . 128 , http , ACCEPT)
815 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 99 . 128 , http , DROP)
816 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 99 . 128 , http , DROP)
817 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , http , ACCEPT)
818 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 7 1 . 6 0 , http , ACCEPT)
819 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , http , ACCEPT)
820 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , http , DROP)
821 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , http , DROP)
822 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 60 . 231 , http , ACCEPT)
823 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 60 . 231 , http , ACCEPT)
824 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 60 . 231 , http , ACCEPT)
825 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 60 . 231 , http , DROP)
826 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 60 . 231 , http , DROP)
827 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 51 . 128 , http , ACCEPT)
828 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 51 . 128 , http , ACCEPT)
829 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 51 . 128 , http , ACCEPT)
830 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 51 . 128 , http , DROP)
831 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 51 . 128 , http , DROP)
832 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 48 . 231 , http , ACCEPT)
833 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 48 . 231 , http , ACCEPT)
834 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 48 . 231 , http , ACCEPT)
835 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 48 . 231 , http , DROP)
836 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 48 . 231 , http , DROP)
837 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 30 . 254 , http , ACCEPT)
838 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 30 . 254 , http , ACCEPT)
839 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 30 . 254 , http , ACCEPT)
840 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 30 . 254 , http , DROP)
841 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 30 . 254 , http , DROP)
842 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
843 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
844 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , http , ACCEPT)
845 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , http , DROP)
846 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , http , DROP)
847 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , http , ACCEPT)
848 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 6 , http , ACCEPT)
849 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , http , ACCEPT)
850 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , http , DROP)
851 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , http , DROP)
852 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , http , ACCEPT)
853 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , http , ACCEPT)
854 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , http , ACCEPT)
855 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , http , DROP)
856 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , http , DROP)
857 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
858 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
859 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , http , ACCEPT)
860 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , http , DROP)
861 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , http , DROP)
862 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 , http , ACCEPT)
863 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 , http , ACCEPT)
864 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , http , ACCEPT)
865 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , http , DROP)
866 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 , http , DROP)
867 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 24 . 231 , http , ACCEPT)
868 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 24 . 231 , http , ACCEPT)
869 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 24 . 231 , http , ACCEPT)
870 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 24 . 231 , http , DROP)
871 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 24 . 231 , http , DROP)
872
873
874 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 2 , https , DROP)
875 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 2 , https , DROP)
876 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 2 , https , DROP)
877 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 128 , https , DROP)

116

APPENDIX A. VALIDATION – TEST TUPLES

878 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 128 , https , DROP)
879 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 128 , https , DROP)
880 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 254 , https , DROP)
881 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 254 , https , DROP)
882 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 254 , https , DROP)
883 (1 0 . 2 0 . 3 0 . 2 , 1 7 2 . 2 0 . 1 3 . 2 , https , DROP)
884 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 7 2 . 2 0 . 1 3 . 2 , https , DROP)
885 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 7 2 . 2 0 . 1 3 . 2 , https , DROP)
886 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 128 , https , DROP)
887 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 128 , https , DROP)
888 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 128 , https , DROP)
889 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 254 , https , DROP)
890 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 254 , https , DROP)
891 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 254 , https , DROP)
892 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 2 , https , ACCEPT)
893 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 2 , https , ACCEPT)
894 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 128 , https , ACCEPT)
895 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 128 , https , ACCEPT)
896 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 254 , https , ACCEPT)
897 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 254 , https , ACCEPT)
898
899 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 66 . 128 , https , ACCEPT)
900 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 66 . 128 , https , ACCEPT)
901 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 66 . 128 , https , ACCEPT)
902 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 66 . 128 , https , DROP)
903 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 66 . 128 , https , DROP)
904 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 200 . 19 , https , ACCEPT)
905 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 200 . 19 , https , ACCEPT)
906 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 200 . 19 , https , ACCEPT)
907 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 200 . 19 , https , DROP)
908 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 200 . 19 , https , DROP)
909 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 100 . 97 , https , ACCEPT)
910 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 100 . 97 , https , ACCEPT)
911 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 100 . 97 , https , ACCEPT)
912 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 100 . 97 , https , DROP)
913 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 100 . 97 , https , DROP)
914 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 3 3 . 0 . 9 9 , https , ACCEPT)
915 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 3 3 . 0 . 9 9 , https , ACCEPT)
916 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , https , ACCEPT)
917 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , https , DROP)
918 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 3 3 . 0 . 9 9 , https , DROP)
919 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 99 . 128 , https , ACCEPT)
920 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 99 . 128 , https , ACCEPT)
921 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 99 . 128 , https , ACCEPT)
922 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 99 . 128 , https , DROP)
923 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 99 . 128 , https , DROP)
924 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , https , ACCEPT)
925 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 7 1 . 6 0 , https , ACCEPT)
926 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , https , ACCEPT)
927 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , https , DROP)
928 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , https , DROP)
929 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 60 . 231 , https , ACCEPT)
930 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 60 . 231 , https , ACCEPT)
931 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 60 . 231 , https , ACCEPT)
932 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 60 . 231 , https , DROP)
933 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 60 . 231 , https , DROP)
934 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 51 . 128 , https , ACCEPT)
935 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 51 . 128 , https , ACCEPT)
936 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 51 . 128 , https , ACCEPT)
937 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 51 . 128 , https , DROP)
938 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 51 . 128 , https , DROP)
939 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 48 . 231 , https , ACCEPT)
940 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 48 . 231 , https , ACCEPT)
941 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 48 . 231 , https , ACCEPT)

117

APPENDIX A. VALIDATION – TEST TUPLES

942 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 48 . 231 , https , DROP)
943 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 48 . 231 , https , DROP)
944 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 30 . 254 , https , ACCEPT)
945 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 30 . 254 , https , ACCEPT)
946 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 30 . 254 , https , ACCEPT)
947 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 30 . 254 , https , DROP)
948 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 30 . 254 , https , DROP)
949 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
950 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
951 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , https , ACCEPT)
952 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , https , DROP)
953 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , https , DROP)
954 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , https , ACCEPT)
955 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 6 , https , ACCEPT)
956 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , https , ACCEPT)
957 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , https , DROP)
958 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , https , DROP)
959 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , https , ACCEPT)
960 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , https , ACCEPT)
961 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , https , ACCEPT)
962 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , https , DROP)
963 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , https , DROP)
964 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , https , ACCEPT)
965 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , https , ACCEPT)
966 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , https , ACCEPT)
967 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , https , DROP)
968 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , https , DROP)
969 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 , https , ACCEPT)
970 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 , https , ACCEPT)
971 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , https , ACCEPT)
972 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , https , DROP)
973 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 , https , DROP)
974 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 24 . 231 , https , ACCEPT)
975 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 24 . 231 , https , ACCEPT)
976 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 24 . 231 , https , ACCEPT)
977 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 24 . 231 , https , DROP)
978 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 24 . 231 , https , DROP)
979
980
981 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 2 , pr inter , DROP)
982 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 2 , pr inter , DROP)
983 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 2 , pr inter , DROP)
984 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 128 , pr inter , DROP)
985 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 128 , pr inter , DROP)
986 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 128 , pr inter , DROP)
987 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 254 , pr inter , DROP)
988 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 254 , pr inter , DROP)
989 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 254 , pr inter , DROP)
990 (1 0 . 2 0 . 3 0 . 2 , 1 7 2 . 2 0 . 1 3 . 2 , pr inter , DROP)
991 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 7 2 . 2 0 . 1 3 . 2 , pr inter , DROP)
992 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 7 2 . 2 0 . 1 3 . 2 , pr inter , DROP)
993 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 128 , pr inter , DROP)
994 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 128 , pr inter , DROP)
995 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 128 , pr inter , DROP)
996 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 254 , pr inter , DROP)
997 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 254 , pr inter , DROP)
998 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 254 , pr inter , DROP)
999 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 2 , pr inter , ACCEPT)

1000 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 2 , pr inter , ACCEPT)
1001 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 128 , pr inter , ACCEPT)
1002 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 128 , pr inter , ACCEPT)
1003 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 254 , pr inter , ACCEPT)
1004 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 254 , pr inter , ACCEPT)
1005

118

APPENDIX A. VALIDATION – TEST TUPLES

1006 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 66 . 128 , pr inter , ACCEPT)
1007 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 66 . 128 , pr inter , ACCEPT)
1008 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 66 . 128 , pr inter , ACCEPT)
1009 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 66 . 128 , pr inter , DROP)
1010 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 66 . 128 , pr inter , DROP)
1011 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 200 . 19 , pr inter , ACCEPT)
1012 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 200 . 19 , pr inter , ACCEPT)
1013 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 200 . 19 , pr inter , ACCEPT)
1014 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 200 . 19 , pr inter , DROP)
1015 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 200 . 19 , pr inter , DROP)
1016 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 100 . 97 , pr inter , ACCEPT)
1017 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 100 . 97 , pr inter , ACCEPT)
1018 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 100 . 97 , pr inter , ACCEPT)
1019 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 100 . 97 , pr inter , DROP)
1020 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 100 . 97 , pr inter , DROP)
1021 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 3 3 . 0 . 9 9 , pr inter , ACCEPT)
1022 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 3 3 . 0 . 9 9 , pr inter , ACCEPT)
1023 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , pr inter , ACCEPT)
1024 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , pr inter , DROP)
1025 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 3 3 . 0 . 9 9 , pr inter , DROP)
1026 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 99 . 128 , pr inter , ACCEPT)
1027 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 99 . 128 , pr inter , ACCEPT)
1028 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 99 . 128 , pr inter , ACCEPT)
1029 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 99 . 128 , pr inter , DROP)
1030 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 99 . 128 , pr inter , DROP)
1031 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , pr inter , ACCEPT)
1032 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 7 1 . 6 0 , pr inter , ACCEPT)
1033 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , pr inter , ACCEPT)
1034 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , pr inter , DROP)
1035 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , pr inter , DROP)
1036 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 60 . 231 , pr inter , ACCEPT)
1037 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 60 . 231 , pr inter , ACCEPT)
1038 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 60 . 231 , pr inter , ACCEPT)
1039 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 60 . 231 , pr inter , DROP)
1040 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 60 . 231 , pr inter , DROP)
1041 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 51 . 128 , pr inter , ACCEPT)
1042 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 51 . 128 , pr inter , ACCEPT)
1043 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 51 . 128 , pr inter , ACCEPT)
1044 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 51 . 128 , pr inter , DROP)
1045 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 51 . 128 , pr inter , DROP)
1046 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 48 . 231 , pr inter , ACCEPT)
1047 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 48 . 231 , pr inter , ACCEPT)
1048 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 48 . 231 , pr inter , ACCEPT)
1049 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 48 . 231 , pr inter , DROP)
1050 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 48 . 231 , pr inter , DROP)
1051 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 30 . 254 , pr inter , ACCEPT)
1052 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 30 . 254 , pr inter , ACCEPT)
1053 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 30 . 254 , pr inter , ACCEPT)
1054 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 30 . 254 , pr inter , DROP)
1055 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 30 . 254 , pr inter , DROP)
1056 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , pr inter , ACCEPT)
1057 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , pr inter , ACCEPT)
1058 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , pr inter , ACCEPT)
1059 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , pr inter , DROP)
1060 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , pr inter , DROP)
1061 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , pr inter , ACCEPT)
1062 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 6 , pr inter , ACCEPT)
1063 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , pr inter , ACCEPT)
1064 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , pr inter , DROP)
1065 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , pr inter , DROP)
1066 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , ACCEPT)
1067 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , ACCEPT)
1068 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , ACCEPT)
1069 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , DROP)

119

APPENDIX A. VALIDATION – TEST TUPLES

1070 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , pr inter , DROP)
1071 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , pr inter , ACCEPT)
1072 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , pr inter , ACCEPT)
1073 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , pr inter , ACCEPT)
1074 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , pr inter , DROP)
1075 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , pr inter , DROP)
1076 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 , pr inter , ACCEPT)
1077 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 , pr inter , ACCEPT)
1078 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , pr inter , ACCEPT)
1079 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , pr inter , DROP)
1080 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 , pr inter , DROP)
1081 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 24 . 231 , pr inter , ACCEPT)
1082 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 24 . 231 , pr inter , ACCEPT)
1083 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 24 . 231 , pr inter , ACCEPT)
1084 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 24 . 231 , pr inter , DROP)
1085 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 24 . 231 , pr inter , DROP)
1086
1087
1088 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 2 , icmp , DROP)
1089 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 2 , icmp , DROP)
1090 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 2 , icmp , DROP)
1091 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 128 , icmp , DROP)
1092 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 128 , icmp , DROP)
1093 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 128 , icmp , DROP)
1094 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 254 , icmp , DROP)
1095 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 254 , icmp , DROP)
1096 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 254 , icmp , DROP)
1097 (1 0 . 2 0 . 3 0 . 2 , 1 7 2 . 2 0 . 1 3 . 2 , icmp , DROP)
1098 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 7 2 . 2 0 . 1 3 . 2 , icmp , DROP)
1099 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 7 2 . 2 0 . 1 3 . 2 , icmp , DROP)
1100 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 128 , icmp , DROP)
1101 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 128 , icmp , DROP)
1102 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 128 , icmp , DROP)
1103 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 254 , icmp , DROP)
1104 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 254 , icmp , DROP)
1105 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 254 , icmp , DROP)
1106 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 2 , icmp , ACCEPT)
1107 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 2 , icmp , ACCEPT)
1108 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 128 , icmp , ACCEPT)
1109 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 128 , icmp , ACCEPT)
1110 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 254 , icmp , ACCEPT)
1111 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 254 , icmp , ACCEPT)
1112
1113 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 66 . 128 , icmp , ACCEPT)
1114 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 66 . 128 , icmp , ACCEPT)
1115 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 66 . 128 , icmp , ACCEPT)
1116 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 66 . 128 , icmp , DROP)
1117 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 66 . 128 , icmp , DROP)
1118 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 200 . 19 , icmp , ACCEPT)
1119 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 200 . 19 , icmp , ACCEPT)
1120 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 200 . 19 , icmp , ACCEPT)
1121 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 200 . 19 , icmp , DROP)
1122 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 200 . 19 , icmp , DROP)
1123 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 100 . 97 , icmp , ACCEPT)
1124 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 100 . 97 , icmp , ACCEPT)
1125 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 100 . 97 , icmp , ACCEPT)
1126 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 100 . 97 , icmp , DROP)
1127 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 100 . 97 , icmp , DROP)
1128 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 3 3 . 0 . 9 9 , icmp , ACCEPT)
1129 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 3 3 . 0 . 9 9 , icmp , ACCEPT)
1130 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , icmp , ACCEPT)
1131 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , icmp , DROP)
1132 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 3 3 . 0 . 9 9 , icmp , DROP)
1133 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 99 . 128 , icmp , ACCEPT)

120

APPENDIX A. VALIDATION – TEST TUPLES

1134 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 99 . 128 , icmp , ACCEPT)
1135 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 99 . 128 , icmp , ACCEPT)
1136 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 99 . 128 , icmp , DROP)
1137 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 99 . 128 , icmp , DROP)
1138 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , icmp , ACCEPT)
1139 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 7 1 . 6 0 , icmp , ACCEPT)
1140 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , icmp , ACCEPT)
1141 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , icmp , DROP)
1142 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , icmp , DROP)
1143 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 60 . 231 , icmp , ACCEPT)
1144 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 60 . 231 , icmp , ACCEPT)
1145 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 60 . 231 , icmp , ACCEPT)
1146 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 60 . 231 , icmp , DROP)
1147 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 60 . 231 , icmp , DROP)
1148 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 51 . 128 , icmp , ACCEPT)
1149 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 51 . 128 , icmp , ACCEPT)
1150 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 51 . 128 , icmp , ACCEPT)
1151 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 51 . 128 , icmp , DROP)
1152 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 51 . 128 , icmp , DROP)
1153 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 48 . 231 , icmp , ACCEPT)
1154 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 48 . 231 , icmp , ACCEPT)
1155 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 48 . 231 , icmp , ACCEPT)
1156 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 48 . 231 , icmp , DROP)
1157 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 48 . 231 , icmp , DROP)
1158 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 30 . 254 , icmp , ACCEPT)
1159 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 30 . 254 , icmp , ACCEPT)
1160 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 30 . 254 , icmp , ACCEPT)
1161 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 30 . 254 , icmp , DROP)
1162 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 30 . 254 , icmp , DROP)
1163 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , icmp , ACCEPT)
1164 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , icmp , ACCEPT)
1165 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , icmp , ACCEPT)
1166 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , icmp , DROP)
1167 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , icmp , DROP)
1168 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , icmp , ACCEPT)
1169 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 6 , icmp , ACCEPT)
1170 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , icmp , ACCEPT)
1171 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , icmp , DROP)
1172 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , icmp , DROP)
1173 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
1174 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
1175 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , ACCEPT)
1176 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , DROP)
1177 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , icmp , DROP)
1178 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , icmp , ACCEPT)
1179 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , icmp , ACCEPT)
1180 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , icmp , ACCEPT)
1181 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , icmp , DROP)
1182 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , icmp , DROP)
1183 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 , icmp , ACCEPT)
1184 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 , icmp , ACCEPT)
1185 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , icmp , ACCEPT)
1186 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , icmp , DROP)
1187 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 , icmp , DROP)
1188 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 24 . 231 , icmp , ACCEPT)
1189 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 24 . 231 , icmp , ACCEPT)
1190 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 24 . 231 , icmp , ACCEPT)
1191 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 24 . 231 , icmp , DROP)
1192 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 24 . 231 , icmp , DROP)
1193
1194
1195 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 2 , t e l n e t , DROP)
1196 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 2 , t e l n e t , DROP)
1197 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 2 , t e l n e t , DROP)

121

APPENDIX A. VALIDATION – TEST TUPLES

1198 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 128 , t e l n e t , DROP)
1199 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 128 , t e l n e t , DROP)
1200 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 128 , t e l n e t , DROP)
1201 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 33 . 254 , t e l n e t , DROP)
1202 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 33 . 254 , t e l n e t , DROP)
1203 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 33 . 254 , t e l n e t , DROP)
1204 (1 0 . 2 0 . 3 0 . 2 , 1 7 2 . 2 0 . 1 3 . 2 , t e l n e t , DROP)
1205 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 7 2 . 2 0 . 1 3 . 2 , t e l n e t , DROP)
1206 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 7 2 . 2 0 . 1 3 . 2 , t e l n e t , DROP)
1207 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 128 , t e l n e t , DROP)
1208 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 128 , t e l n e t , DROP)
1209 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 128 , t e l n e t , DROP)
1210 (1 0 . 2 0 . 3 0 . 2 , 172 . 20 . 13 . 254 , t e l n e t , DROP)
1211 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 20 . 13 . 254 , t e l n e t , DROP)
1212 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 20 . 13 . 254 , t e l n e t , DROP)
1213 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 2 , t e l n e t , ACCEPT)
1214 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 2 , t e l n e t , ACCEPT)
1215 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 128 , t e l n e t , ACCEPT)
1216 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 128 , t e l n e t , ACCEPT)
1217 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 33 . 254 , t e l n e t , ACCEPT)
1218 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 33 . 254 , t e l n e t , ACCEPT)
1219
1220 (1 0 . 2 0 . 3 0 . 2 , 192 . 168 . 66 . 128 , t e l n e t , ACCEPT)
1221 (1 0 . 2 0 . 3 0 . 1 2 8 , 192 . 168 . 66 . 128 , t e l n e t , ACCEPT)
1222 (1 0 . 2 0 . 3 0 . 2 5 4 , 192 . 168 . 66 . 128 , t e l n e t , ACCEPT)
1223 (1 0 . 2 0 . 2 9 . 2 5 4 , 192 . 168 . 66 . 128 , t e l n e t , DROP)
1224 (1 0 . 2 0 . 3 1 . 2 , 192 . 168 . 66 . 128 , t e l n e t , DROP)
1225 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 200 . 19 , t e l n e t , ACCEPT)
1226 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 200 . 19 , t e l n e t , ACCEPT)
1227 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 200 . 19 , t e l n e t , ACCEPT)
1228 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 200 . 19 , t e l n e t , DROP)
1229 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 200 . 19 , t e l n e t , DROP)
1230 (1 0 . 2 0 . 3 0 . 2 , 172 . 100 . 100 . 97 , t e l n e t , ACCEPT)
1231 (1 0 . 2 0 . 3 0 . 1 2 8 , 172 . 100 . 100 . 97 , t e l n e t , ACCEPT)
1232 (1 0 . 2 0 . 3 0 . 2 5 4 , 172 . 100 . 100 . 97 , t e l n e t , ACCEPT)
1233 (1 0 . 2 0 . 2 9 . 2 5 4 , 172 . 100 . 100 . 97 , t e l n e t , DROP)
1234 (1 0 . 2 0 . 3 1 . 2 , 172 . 100 . 100 . 97 , t e l n e t , DROP)
1235 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 3 3 . 0 . 9 9 , t e l n e t , ACCEPT)
1236 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 3 3 . 0 . 9 9 , t e l n e t , ACCEPT)
1237 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , t e l n e t , ACCEPT)
1238 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 3 3 . 0 . 9 9 , t e l n e t , DROP)
1239 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 3 3 . 0 . 9 9 , t e l n e t , DROP)
1240 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 99 . 128 , t e l n e t , ACCEPT)
1241 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 99 . 128 , t e l n e t , ACCEPT)
1242 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 99 . 128 , t e l n e t , ACCEPT)
1243 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 99 . 128 , t e l n e t , DROP)
1244 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 99 . 128 , t e l n e t , DROP)
1245 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , t e l n e t , ACCEPT)
1246 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 7 1 . 6 0 , t e l n e t , ACCEPT)
1247 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , t e l n e t , ACCEPT)
1248 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 7 1 . 6 0 , t e l n e t , DROP)
1249 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 7 1 . 6 0 , t e l n e t , DROP)
1250 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 60 . 231 , t e l n e t , ACCEPT)
1251 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 60 . 231 , t e l n e t , ACCEPT)
1252 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 60 . 231 , t e l n e t , ACCEPT)
1253 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 60 . 231 , t e l n e t , DROP)
1254 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 60 . 231 , t e l n e t , DROP)
1255 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 51 . 128 , t e l n e t , ACCEPT)
1256 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 51 . 128 , t e l n e t , ACCEPT)
1257 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 51 . 128 , t e l n e t , ACCEPT)
1258 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 51 . 128 , t e l n e t , DROP)
1259 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 51 . 128 , t e l n e t , DROP)
1260 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 48 . 231 , t e l n e t , ACCEPT)
1261 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 48 . 231 , t e l n e t , ACCEPT)

122

APPENDIX A. VALIDATION – TEST TUPLES

1262 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 48 . 231 , t e l n e t , ACCEPT)
1263 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 48 . 231 , t e l n e t , DROP)
1264 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 48 . 231 , t e l n e t , DROP)
1265 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 30 . 254 , t e l n e t , ACCEPT)
1266 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 30 . 254 , t e l n e t , ACCEPT)
1267 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 30 . 254 , t e l n e t , ACCEPT)
1268 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 30 . 254 , t e l n e t , DROP)
1269 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 30 . 254 , t e l n e t , DROP)
1270 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , t e l n e t , ACCEPT)
1271 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 4 5 , t e l n e t , ACCEPT)
1272 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , t e l n e t , ACCEPT)
1273 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 4 5 , t e l n e t , DROP)
1274 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 4 5 , t e l n e t , DROP)
1275 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , t e l n e t , ACCEPT)
1276 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 6 , t e l n e t , ACCEPT)
1277 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , t e l n e t , ACCEPT)
1278 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 6 , t e l n e t , DROP)
1279 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 6 , t e l n e t , DROP)
1280 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , t e l n e t , ACCEPT)
1281 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 6 , t e l n e t , ACCEPT)
1282 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , t e l n e t , ACCEPT)
1283 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 6 , t e l n e t , DROP)
1284 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 6 , t e l n e t , DROP)
1285 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , t e l n e t , ACCEPT)
1286 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 1 1 , t e l n e t , ACCEPT)
1287 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , t e l n e t , ACCEPT)
1288 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 1 1 , t e l n e t , DROP)
1289 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 1 1 , t e l n e t , DROP)
1290 (1 0 . 2 0 . 3 0 . 2 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , ACCEPT)
1291 (1 0 . 2 0 . 3 0 . 1 2 8 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , ACCEPT)
1292 (1 0 . 2 0 . 3 0 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , ACCEPT)
1293 (1 0 . 2 0 . 2 9 . 2 5 4 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , DROP)
1294 (1 0 . 2 0 . 3 1 . 2 , 1 0 . 2 0 . 3 0 . 2 , t e l n e t , DROP)
1295 (1 0 . 2 0 . 3 0 . 2 , 10 . 20 . 24 . 231 , t e l n e t , ACCEPT)
1296 (1 0 . 2 0 . 3 0 . 1 2 8 , 10 . 20 . 24 . 231 , t e l n e t , ACCEPT)
1297 (1 0 . 2 0 . 3 0 . 2 5 4 , 10 . 20 . 24 . 231 , t e l n e t , ACCEPT)
1298 (1 0 . 2 0 . 2 9 . 2 5 4 , 10 . 20 . 24 . 231 , t e l n e t , DROP)
1299 (1 0 . 2 0 . 3 1 . 2 , 10 . 20 . 24 . 231 , t e l n e t , DROP)
1300
1301
1302
1303 /∗
1304 ADMIN −> FW ACCEPT ∗
1305 ∗/

123

Appendix B

Haskell Code for End to Mid

1 −−−
2 −− Conversion o f an endpoin t automaton to a midpoint automaton
3 −− Diana von Bidder , 2006
4 −− $Id : End−Mid . hs 32815 2006−11−30 12:24:03 Z dsenn $

5 −−−
6
7 −−−
8 −− example usage :
9 −−−

10 −− EndMid> deltaM [(CLOSED, LISTEN, ([] , [] , [] , []))] (”E0” , ”M” , ”S”)
11 −− [(SYNSENT,LISTEN , ([] , [] , [(” S ” , 1)] , []))]
12 −− EndMid> lambdaM [(CLOSED, LISTEN, ([] , [] , [] , []))] (”E0” , ”M” , ”S”)
13 −− ”S”
14 −− EndMid>
15 −−−
16 module EndMid where

17 import MultiSet
18
19
20
21 −−−
22 −− Mealy machines
23 −−−
24 −− a Mealy machine
25 data Nfa a = NFA (Bag a)
26 (Bag (Move a))
27 a
28 (Bag a)
29 deriving (Eq, Show)
30
31 −− lambda & de l t a : s t a r t−s t a t e input ou tpu t end−s t a t e
32 data Move a = MOVE a String String a
33 deriving (Eq, Ord , Show)
34
35
36

124

APPENDIX B. HASKELL CODE FOR END TO MID

37 −−−
38 −− End − Mid
39 −−−
40 −− q \ in Q M, net M = (M −> E0 , E0 −> M, M −> E1 , E1 −> M)
41 type Mtr a = (a , a , (Bag String , Bag String , Bag String , Bag String))
42
43 compare : : Ord a => Mtr a −> Mtr a −> Ordering

44 compare (a , b , (c , d , e , f)) (g , h , (i , j , k , l))
45 | (a == g) && (b == h) && (c == i) && (d == j) && (e == k)
46 && (f == l) = EQ

47 | otherwise = Prelude . compare a g
48
49 mequal (a , b , (c , d , e , f)) (g , h , (i , j , k , l)) = (a == g) && (b == h)
50 && (toL i s t c == toL i s t i) && (toL i s t d == toL i s t j)
51 && (toL i s t e == toL i s t k) && (toL i s t f == toL i s t l)
52
53
54 −− succ (q M) as de f ined in my t h e s i s
55 succS1 : : [Mtr TCPstate] −> [Mtr TCPstate]
56 succS1 q = l i s t t o s e t (fo ld l (++) [] [succS2 t | t <− q])
57
58 succS2 : : Mtr TCPstate −> [Mtr TCPstate]
59 succS2 (q0 , q1 , (net1 , net2 , net3 , net4)) =
60 [(q0 , q1 , (net1 , net2 , net3 , net4))]
61 ++ [(q0 , q1 , (delete msg net1 , net2 , net3 , net4)) | (msg ,) <− net1]
62 ++ [(q0 , q1 , (net1 , delete msg net2 , net3 , net4)) | (msg ,) <− net2]
63 ++ [(q0 , q1 , (net1 , net2 , delete msg net3 , net4)) | (msg ,) <− net3]
64 ++ [(q0 , q1 , (net1 , net2 , net3 , delete msg net4)) | (msg ,) <− net4]
65 ++ [(de l ta0 q0 msg , q1 , (delete msg net1 , i n s e r t 2 (lambda0 q0 msg) net2 ,
66 net3 , net4)) | (msg ,) <− net1]
67 ++ [(de l ta0 q0 ”−” , q1 , (net1 , i n s e r t 2 (lambda0 q0 ”−”) net2 , net3 , net4))]
68 ++ [(q0 , de l ta1 q1 msg , (net1 , net2 , delete msg net3 ,
69 i n s e r t 2 (lambda1 q1 msg) net4)) | (msg ,) <− net3]
70 ++ [(q0 , de l ta1 q1 ”−” , (net1 , net2 , net3 , i n s e r t 2 (lambda1 q1 ”−”) net4))]
71
72
73 −− c l o s u r e as de f ined in my t h e s i s
74 c l f x = i f (s e t e qua l (f x) (x)) then x else (c l f (f x))
75
76
77 −− ”−” shou ld not be sen t
78 i n s e r t 2 m net
79 | m == ”−” = net
80 | otherwise = insert m net
81
82
83
84 −− deltaM as de f ined in my t he s i s , (”E0” , ”M” , m) == E0 −> M: m
85 deltaM q (”E0” , ”M” , m) = [(q0 , q1 , (net1 , delete msg net2 ,
86 i n s e r t 2 (lambdaM q (”E0” , ”M” , msg)) net3 , net4)) | (q0 , q1 , (net1 , net2 ,
87 net3 , net4)) <− (c l succS1 q) , (msg ,) <− net2 , msg == m]

125

APPENDIX B. HASKELL CODE FOR END TO MID

88 deltaM q (”E1” , ”M” , m) = [(q0 , q1 , (i n s e r t 2 (lambdaM q (”E1” , ”M” , m)) net1 ,
89 net2 , net3 , delete m net4)) | (q0 , q1 , (net1 , net2 , net3 , net4)) <− (c l
90 succS1 q) , (msg ,) <− net4 , msg == m]
91
92
93 −− lambdaM as de f ined in my t h e s i s
94 lambdaM q (e , ”M” , m) = my out [out (q0 , q1 , (net1 , net2 , net3 , net4)) (e , m)
95 | (q0 , q1 , (net1 , net2 , net3 , net4)) <− (c l succS1 q)]
96
97
98 −− out as de f ined in my t h e s i s
99 out (q0 , q1 , (net1 , net2 , net3 , net4)) (”E0” , m) = i f (element m net2)

100 then m else ”−”
101 out (q0 , q1 , (net1 , net2 , net3 , net4)) (”E1” , m) = i f (element m net4)
102 then m else ”−”
103
104 −− the f i r s t non−”−” element o f a l i s t
105 my out [] = ”−”
106 my out (x : xs)
107 | x == ”−” = my out xs
108 | otherwise = x
109
110
111
112 −−−
113 −− se t− and l i s t −s p e c i f i c e x t r a s
114 −−−
115 −− conver t a l i s t to a s e t (every element on ly once)
116 l i s t t o s e t [] = []
117 l i s t t o s e t (x : xs) = i f ([m | m <− xs , mequal x m] == [])
118 then x : (l i s t t o s e t xs)
119 else l i s t t o s e t xs
120
121 −− d e l e t e y from (x : xs)
122 mtrminus [] = []
123 mtrminus (x : xs) y
124 | x == y = xs
125 | otherwise = x : (mtrminus xs y)
126
127
128 −− compare two s e t s (midpoint s t a t e s) f o r e q u a l i t y
129 s e t e qua l [] [] = True

130 s e t e qua l [] = False

131 s e t e qua l [] = False

132 s e t e qua l (x : xs) (y : ys)
133 | mequal x y = s e t e qua l xs ys
134 | otherwise = i f (temp == [])
135 then False

136 else s e t e qua l xs (y : (mtrminus ys (head temp)))
137 where temp = [m | m <− ys , mequal x m]
138

126

APPENDIX B. HASKELL CODE FOR END TO MID

139
140 −− head does not work f o r empty l i s t s . . .
141 my head : : [String] −> String

142 my head [] = ”−”
143 my head (x :) = x
144
145
146
147 −−−
148 −− TCP Spe c i f i c a t i o n f o r Endpoints
149 −−−
150 −− s t a t e s
151 −− on ly one run => CLOSED i s the s t a r t−s t a t e , CLOSED2 i s the ends t a t e
152 data TCPstate = CLOSED | CLOSED2 | LISTEN | SYNSENT | SYNRCVD | ESTAB
153 | FINWAIT1 | FINWAIT2 | CLOSING | CLOSEWAIT | LASTACK | TIMEWAIT
154 deriving (Enum, Ord , Eq, Show)
155
156
157 −− t r a n s i t i o n s
158 −− ”A1” i s the ACK of a SYN, ”A2” i s the ACK of a FIN
159 −− no symultaneous open => LISTEN −−> SYN SENT i s miss ing
160 tcp : : Nfa TCPstate
161 tcp = NFA
162 (fromLis t [CLOSED . . TIMEWAIT])
163 (f romLis t [(MOVE CLOSED ”−” ”S” SYNSENT) ,
164 (MOVE CLOSED ”−” ”−” LISTEN) ,
165 (MOVE LISTEN ”S” ”SA” SYNRCVD) ,
166 (MOVE SYNSENT ”S” ”A1” SYNRCVD) ,
167 (MOVE SYNSENT ”SA” ”A1” ESTAB) ,
168 (MOVE SYNRCVD ”A1” ”−” ESTAB) ,
169 (MOVE SYNRCVD ”−” ”F” FINWAIT1) ,
170 (MOVE ESTAB ”−” ”F” FINWAIT1) ,
171 (MOVE ESTAB ”F” ”A2” CLOSEWAIT) ,
172 (MOVE FINWAIT1 ”F” ”A2” CLOSING) ,
173 (MOVE FINWAIT1 ”A2” ”−” FINWAIT2) ,
174 (MOVE CLOSEWAIT ”−” ”F” LASTACK) ,
175 (MOVE CLOSING ”A2” ”−” TIMEWAIT) ,
176 (MOVE FINWAIT2 ”F” ”A2” TIMEWAIT) ,
177 (MOVE LASTACK ”A2” ”−” CLOSED2) ,
178 (MOVE TIMEWAIT ”−” ”−” CLOSED2)])
179 CLOSED
180 (fromLis t [CLOSED2])
181
182
183 −− d e l t a and lambda o f E0 and E1
184 de l ta0 q m = i f (temp == []) then q else head temp
185 where temp = [qend | NFA s t a t e s moves s t a r t term <− [tcp] ,
186 (MOVE r n qend ,) <− moves , r == q , n == m]
187
188 lambda0 q m = my head [out | (NFA s t a t e s moves s t a r t term) <− [tcp] ,
189 (MOVE r n out ,) <− moves , r == q , n == m]

127

APPENDIX B. HASKELL CODE FOR END TO MID

190
191 de l ta1 = de l ta0
192 lambda1 = lambda0

128

Appendix C

Abstract Test Cases for TCP

The following represent abstract test cases for the TCP Midpoint automaton in Figure 10.1.
They were generated with the help of the TCGTool (see section 5.1). Note that every
line represents a test case, where every (input/expected output)-tuple represents a test
packet.

1 (2/2)(5/5)(6/6)(8/8)(7/7)(11/−) (7/−)
2 (2/2)(9/9)(5/5)(6/6)(6/6)(2/−) (9/−)
3 (2 / 2) (9 / 9) (5/5) (6/6) (1a/−)(7/−)
4 (6/−)(9/−)
5 (2 / 2) (5 / 5) (6/6) (8/8) (7/ 7) (1a/−)(6/−)
6 (2/2)(6/−)(9/9)
7 (2/2)(5/5)(6/6)(8/8)(6/ −)
8 (2/2)(9/9)(7/ −)(6/−)
9 (2/2)(9/9)(5/5)(8/8)(7/7)(9/−) (9/−)

10 (2/2) (5/5) (6/6)(8/8) (4/−) (7/7)
11 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(7/ −) (6/6)(6/ −)
12 (2/2) (5/5) (8/8)(7/7) (6/6) (8/−)
13 (2/2) (5/5) (6/6)(8/8) (8/−) (9/9)
14 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(5/−) (8/ −)
15 (2/2)(5/5)(8/8)(10/−)(8/−)
16 (2/2) (9/9) (5/5)(8/8) (2/−) (7/7)
17 (2/2)(5/5)(5/−) (8/8)
18 (2/2)(5/5)(8/8)(11/ −) (7/7)
19 (2/2) (5/5) (8/8)(7/7) (6/6) (6/−)
20 (2 / 2) (5 / 5) (8/8) (7/7) (1b/−)(8/−)
21 (2/2) (9/9) (5/5) (8/8) (6/−) (6/6) (7/7)
22 (2/2)(9/9)(5/5)(6/6)(6/6)(4/−) (9/−)
23 (2/2)(9/9)(5/5)(3/ −) (8/8)
24 (2/2)(9/9)(5/5)(8/8)(6/−) (7/7)(9/−)
25 (2/2) (5/5) (6/6) (9/9)
26 (2/2)(9/9)(5/5)(8/8)(4/−) (6/−)
27 (2/2)(5/5)(6/6)(7/ −) (8/8)
28 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(4/−) (9/ −)
29 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(8/ −) (7/7)
30 (2 / 2) (5 / 5) (6/6) (8/8) (7/ 7) (1b/−)(7/−)
31 (2/2)(9/9)(5/5)(8/8)(7/7)(8/−) (8/−)

129

APPENDIX C. ABSTRACT TEST CASES FOR TCP

32 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 a/−)(5/−)
33 (2/2) (5/5)(8/8) (7/7) (6/6) (5/−)
34 (1 a/−)(9/−)
35 (2/2)(5/5)(6/6)(8/8)(7/7)(2/−) (6/−)
36 (3/−)(7/−)
37 (2/2) (5/5)(6/6) (8/8) (3/−) (7/7)
38 (2 / 2) (9 / 9) (5/5) (8 /8) (1a/−)(7/−)
39 (6/−)(6/−)
40 (2/2) (5/5)(6/6) (8/8) (6/−) (9/9)
41 (2/2)(5/5)(8/8)(9/9)(9/ −)
42 (2/2)(5/5)(6/6)(8/8)(7/7)(8/−) (6/−)
43 (2 / 2) (9 / 9) (5 /5) (6/6) (6/6) (1a/−)(5/−)
44 (2/2)(5/5)(4/−) (6/6)
45 (2/2)(5/5)(6/6)(2/ −) (8/8)
46 (6/−)(8/−)
47 (2/2) (9/9) (1 a/−)(6/−)
48 (2/2)(9/9)(2/ −)(9/−)
49 (2/2) (9/9) (5/5) (6/6) (6/6) (3/−) (8/8)
50 (2/2)(11/−)(6/−)
51 (2/2) (5/5) (6/6) (8/8) (7/7) (7/−) (9/9)
52 (2/2)(5/5)(8/8)(6/6)(6/ −)
53 (2/2)(5/5)(8/8)(7/7)(4/−) (8/−)
54 (2/2)(3/ −)(9/9)
55 (2/2)(8/−)(8/−)
56 (2/2)(9/9)(5/5)(11/ −) (8/8)
57 (2 / 2) (5 / 5) (6/6) (8 /8) (1a/−)(7/−)
58 (2/2)(9/9)(5/5)(8/8)(7/7)(5/−) (9/−)
59 (2/2)(5/5)(6/6)(8/8)(7/7)(10/−) (6/−)
60 (9/−)(9/−)
61 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(2/ −) (7/7)
62 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(11/−) (9/ −)
63 (2/2) (9/9)(5/5) (8/8) (5/−) (7/7)
64 (2/2) (5/5) (6/6) (8/8) (7/7) (8/−) (9/9)
65 (2/2) (5/5)(8/8) (7/7) (6/6) (7/−)
66 (2/2)(9/9)(5/5)(8/8)(7/7)(4/−) (9/−)
67 (7/−)(7/−)
68 (2/2)(5/5)(6/6)(9/9)(9/ −)
69 (2/2) (9/9) (5/5) (1 a/−)(8/−)
70 (2/2)(9/9)(5/5)(6/6)(9/ −)
71 (2/2)(4/−)(7/−)
72 (2/2) (5/5) (8/8) (1 a/−)(8/−)
73 (2/2)(5/5)(6/6)(7/−)(6/−)
74 (2/2) (9/9)(5/5) (6/6) (3/−) (8/8)
75 (2/2) (9/9) (5/5) (1 b/−)(6/−)
76 (2 / 2) (5 / 5) (6/6) (8 /8) (9/9) (7/7)
77 (2 / 2) (5 / 5) (8/8) (7 /7) (1a/−)(6/−)
78 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(5/−)
79 (2 / 2) (9 / 9) (5 /5) (8/8) (7/7) (1b/−)(7/−)
80 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(2/ −) (6/6)(6/ −)
81 (7/−)(6/−)
82 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 a/−)(9/−)

130

APPENDIX C. ABSTRACT TEST CASES FOR TCP

83 (2/2)(9/9)(7/−) (5/5)
84 (2/2)(5/5)(6/6)(5/−)
85 (2/2)(9/9)(7/ −)(8/−)
86 (2/2)(5/5)(6/6)(8/8)(7/7)(2/−) (5/−)
87 (2/2)(9/9)(5/5)(8/8)(6/−) (5/−) (7/7)
88 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(8/−) (1 a/−)
89 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(10/−) (9/ −)
90 (10/−)(6/−)
91 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1a/−)(6/−)
92 (2/2)(5/5)(8/8)(2/−)(8/−)
93 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(11/−) (7/ −)
94 (2/2)(5/5)(6/6)(5/ −) (8/8)
95 (2/2) (5/5) (8/8) (1 a/−)(5/−)
96 (2/2)(9/9)(4/ −)(8/−)
97 (2/2) (5/5) (1 a/−)
98 (2/2)(5/5)(6/6)(8/8)(7/7)(3/−) (6/−)
99 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(7/7)(5/−)

100 (2 / 2) (9 / 9) (5/5) (6/6) (1b/−)(7/−)
101 (2/2)(9/9)(9/ −)(7/−)
102 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(6/ −)(9/ −)
103 (2/2)(5/5)(6/6)(8/8)(5/−) (6/−)
104 (2/2) (5/5) (8/8)(7/7) (7/−) (6/6)
105 (2/2)(6/−)(6/−)
106 (2 / 2) (9 / 9) (5/5) (6/6) (1a/−)(9/−)
107 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(11/ −) (6/6)(6/ −)
108 (7/−)(5/−)
109 (2/2)(5/5)(2/−) (8/8)
110 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(5/−) (1 a/−)
111 (2/2)(9/9)(8/ −)(6/−)
112 (2/2)(5/5)(6/6)(5/−)(6/−)
113 (2/2)(5/5)(6/6)(8/8)(7/7)(2/−) (7/−)
114 (11/−)(8/−)
115 (2/2) (9/9) (1 b/−)(9/−)
116 (2/2)(5/5)(8/8)(10/ −) (7/7)
117 (2/2) (9/9) (5/5)(6/6) (5/−) (8/8)
118 (2/2)(5/5)(4/−) (8/8)
119 (2/2)(9/9)(5/5)(8/8)(4/ −) (1 a/−)
120 (2/2) (5/5) (8/8)(7/7) (5/−) (9/9)
121 (9/−)
122 (2/2) (9/9) (5/5) (6/6) (6/6) (9/−) (8/8)
123 (2/2)(5/5)(2/−) (6/6)
124 (2/2)(9/9)(5/5)(8/8)(7/7)(10/−) (7/−)
125 (2/2) (5/5) (9/9) (8/8)
126 (2/2)(9/9)(2/ −)(8/−)
127 (2/2)(9/9)(5/5)(8/8)(6/−) (8/−) (7/7)
128 (2/2)(5/5)(6/6)(8/8)(3/−) (6/−)
129 (2/2) (9/9) (5/5)(6/6) (8/8) (8/−)
130 (2/2)(5/5)(6/6)(11/−)(7/−)
131 (2/2)(9/9)(5/5)(8/8)(7/7)(11/−) (8/−)
132 (1b/−)(6/−)
133 (2/2)(5/5)(6/6)(8/8)(7/7)(6/−) (7/−)

131

APPENDIX C. ABSTRACT TEST CASES FOR TCP

134 (2/2) (9/9) (5/5) (6/6) (6/6) (6/−) (8/8)
135 (2/2)(9/9)(5/5)(8/8)(6/−) (10/−) (6/6)
136 (2/2)(9/9)(5/5)(8/8)(5/−) (9/−)
137 (2/2)(9/9)(5/5)(8/8)(6/−) (2/−) (6/6)
138 (2/2)(9/9)(10/ −)(6/−)
139 (2/2)(9/9)(4/−) (5/5)
140 (2/2)(9/9)(2/−) (5/5)
141 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (6/6) (7/−)
142 (2/2)(9/9)(5/5)(8/8)(6/−) (5/−)
143 (11/−)(5/−)
144 (2 / 2) (9 / 9) (5 / 5) (8/8) (7/ 7) (6/6) (1a/−)(9/−)
145 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(7/7)(8/ −)
146 (7/−)(9/−)
147 (2/2)(9/9)(11/−) (5/5)
148 (2/2)(5/5)(8/8)(8/ −) (6/6)
149 (2/2)(5/5)(8/8)(7/7)(5/ −)
150 (2/2)(5/5)(6/6)(8/8)(7/7)(11/−) (8/−)
151 (2/2) (9/9)(5/5) (5/−) (6/6) (6/6)
152 (2/2) (9/9) (5/5) (1 b/−)(8/−)
153 (2/2)(9/9)(10/ −)(7/−)
154 (2/2)(9/9)(5/5)(8/8)(7/7)(5/−) (8/−)
155 (2/2) (5/5) (1 a/−)(5/−)
156 (2/2)(5/5)(8/8)(5/ −) (6/6)
157 (2/2)(9/9)(5/5)(10/ −) (8/8)
158 (2/2) (9/9) (5/5) (8/8) (7/7) (10/−) (6/6) (6/6)
159 (2/2)(5/5)(6/6)(7/ −) (9/9)
160 (2/2)(5/5)(6/6)(8/8)(8/ −)
161 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(7/7)(7/ −)
162 (2/2)(9/9)(2/ −)(6/−)
163 (2/2) (5/5) (1 b/−)(9/−)
164 (2/2)(5/5)(11/−) (9/9)
165 (2/2)(4/−)(8/−)
166 (2/2) (5/5)(6/6) (8/8) (5/−) (9/9)
167 (2/2)(11/−)(9/9)
168 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(8/−) (7/ −)
169 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 b/−)(7/−)
170 (2/2)(9/9)(5/5)(8/8)(11/ −)(9/ −)
171 (2/2)(5/5)(7/−) (8/8)
172 (4/−)(7/−)
173 (2/2)(5/5)(8/8)(7/7)(8/−) (8/−)
174 (2/2) (5/5)(6/6) (8/8) (4/−) (9/9)
175 (2/2) (5/5) (8/8) (1 a/−)
176 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(4/ −) (7/7)
177 (2/2)(9/9)(5/5)(8/8)(6/−)(8/−)(8/−)
178 (2/2)(5/5)(8/8)(7/7)(10/ −) (6/6)
179 (2/2) (9/9) (5/5) (6/6) (6/6) (5/−) (8/8)
180 (2/2) (5/5) (1 b/−)(7/−)
181 (3/−)(8/−)
182 (2/2)(9/9)(5/5)(6/6)(9/−) (6/6)(6/−)
183 (2/2) (9/9)(5/5) (4/−) (6/6) (6/6)
184 (2/2)(9/9)(10/−) (5/5)

132

APPENDIX C. ABSTRACT TEST CASES FOR TCP

185 (2/2) (5/5) (8/8)(7/7) (3/−) (6/6)
186 (2/2)(5/5)(8/8)(7/7)(4/−) (7/−)
187 (2/2)(9/9)(5/5)(8/8)(2/−) (6/−)
188 (2/2)(9/9)(5/5)(6/6)(6/6)(7/−) (7/−)
189 (8/−)(7/−)
190 (2 / 2) (9 / 9) (5/5) (6/6) (6/ 6) (1a/−)(9/−)
191 (2 / 2) (5 / 5) (8/8) (7/7) (6/6)
192 (2/2)(5/5)(8/8)(7/7)(10/ −) (9/9)
193 (2/2)(9/9)(5/5)(8/8)(6/−) (5/−) (6/6)
194 (2/2)(9/9)(9/ −)(8/−)
195 (2/2)(10/−)(7/−)
196 (2 / 2) (5 / 5) (6 /6) (8/8) (9/9) (6/6)
197 (2/2)(9/9)(5/5)(8/8)(11/ −) (7/7)
198 (2/2) (5/5) (1 a/−)(8/−)
199 (2/2)(9/9)(5/5)(8/8)(7/7)(11/−) (9/−)
200 (2/2)(5/5)(8/8)(4/ −) (6/6)
201 (2/2)(9/9)(5/5)(6/6)(11/−) (6/6)(6/−)
202 (2/2) (5/5) (6/6) (1 a/−)(7/−)
203 (2/2)(5/5)(7/ −)
204 (2/2)(6/−)(7/−)
205 (2/2)(9/9)(5/5)(4/−)(9/−)
206 (2/2)(5/5)(6/6)(6/−)(6/−)
207 (2/2)(9/9)(3/−) (5/5)
208 (2/2)(9/9)(6/ −)(8/−)
209 (2/2)(5/5)(6/6)(8/8)(7/7)(11/−) (6/−)
210 (2/2) (5/5) (8/8)(7/7) (9/9) (9/−)
211 (2 / 2) (5 / 5) (8/8) (7/7) (9/9) (6/ 6) (6/6)
212 (2/2) (9/9) (5/5) (8/8) (7/7) (4/−) (6/6) (6/6)
213 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(5/−) (7/ −)
214 (2/2) (5/5) (1 a/−)(6/−)
215 (2/2)(10/−)(5/5)
216 (2/2)(9/9)(5/5)(8/8)(6/−) (8/−)
217 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(4/−) (8/ −)
218 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(11/−) (7/7)
219 (2/2)(5/5)(6/6)(8/8)(7/7)(7/−) (7/−)
220 (2 / 2) (5 / 5) (8/8) (7/7) (1b/−)(9/−)
221 (2 / 2) (9 / 9) (5/5) (6/6) (1b/−)(6/−)
222 (2/2)(9/9)(5/5)(8/8)(6/−)(4/−)(9/−)
223 (2/2)(5/5)(8/8)(4/ −) (7/7)
224 (5/−)(7/−)
225 (2 / 2) (9 / 9) (5/5) (8/8) (1b/−)(5/−)
226 (2/2)(9/9)(5/5)(8/8)(5/ −)
227 (2/2)(5/5)(8/8)(7/7)(7/ −)
228 (2 / 2) (5 / 5) (6/6) (8/8) (1b/−)(7/−)
229 (10/−)(7/−)
230 (2 / 2) (9 / 9) (5 /5) (6/6) (6 /6) (8/8) (1a/−)
231 (2/2)(5/5)(8/8)(8/−)
232 (2/2) (9/9) (5/5) (8/8) (7/7) (7/−) (6/6) (6/6)
233 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(3/ −) (6/6)(6/ −)
234 (2 / 2) (9 / 9) (5/5) (8/8) (1a/−)(9/−)
235 (2/2) (5/5) (6/6) (1 b/−)(7/−)

133

APPENDIX C. ABSTRACT TEST CASES FOR TCP

236 (2/2)(8/−)
237 (2/2)(9/9)(5/5)(6/6)(10/−) (6/6)(6/−)
238 (2/2)(5/5)(8/8)(7/7)(8/ −)
239 (2/2)(2/ −)(5/5)
240 (2 / 2) (9 / 9) (5 /5) (8/ 8) (7/7) (6/6) (6/6)
241 (2/2) (1b/−)(9/−)
242 (2/2)(5/5)(6/6)(8/8)(2/−) (6/−)
243 (2/2)(5/5)(6/6)(8/8)(7/7)(3/−) (7/−)
244 (2/2)(5/5)(8/8)(7/7)(10/ −)(7/ −)
245 (2/2) (5/5) (1 a/−)(7/−)
246 (2/2)(5/5)(6/6)(6/−)
247 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(5/ −)(9/ −)
248 (2/2)(5/5)(6/6)(4/−)(7/−)
249 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 b/−)(5/−)
250 (2/2)(9/9)(5/5)(5/−)
251 (2/2) (9/9) (5/5) (6/6) (6/6) (4/−) (8/8)
252 (2/2)(9/9)(5/5)(8/8)(4/−) (9/−)
253 (3/−)(6/−)
254 (2/2) (9/9)(5/5) (8/8) (8/−) (7/7)
255 (2 / 2) (9 / 9) (5 /5) (8/8) (7/7) (1b/−)(6/−)
256 (2/2)(9/9)(5/5)(6/6)(6/6)(10/−) (6/−)
257 (2/2)(7/ −)(5/5)
258 (2/2)(5/5)(8/8)(5/ −) (9/9)
259 (2/2)(9/9)(8/−) (5/5)
260 (2/2) (9/9) (5/5) (6/6)
261 (2/2)(5/5)(7/−) (9/9)
262 (2/2)(5/5)(6/6)(6/ −) (8/8)
263 (2/2) (5/5) (6/6) (1 a/−)(9/−)
264 (2/2)(5/5)(4/−) (9/9)
265 (2/2)(9/9)(5/5)(6/6)(6/6)(5/−) (9/−)
266 (2/2)(5/5)(3/−) (8/8)
267 (2/2) (5/5) (8/8) (1 b/−)(8/−)
268 (2/2)(11/−)(7/−)
269 (2/2)(9/9)(5/5)(6/6)(6/6)(11/−) (7/−)
270 (4/−)(9/−)
271 (2/2) (1b/−)(8/−)
272 (2/2)(9/9)(5/5)(6/6)(5/−) (6/6)(6/−)
273 (2/2)(9/9)(5/5)(6/6)(6/6)(11/−) (9/−)
274 (2/2)(9/9)(5/5)(8/8)(7/7)(7/−) (8/−)
275 (2 / 2) (9 / 9) (5 /5) (6/6) (6/6) (1a/−)
276 (2/2)(9/9)(5/5)(8/8)(6/−)(10/−)(9/−)
277 (2/2)(9/9)(5/5)(8/8)(7/7)(11/−) (7/−)
278 (2/2) (9/9) (5/5) (6/6) (6/6) (2/−) (8/8)
279 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(7/−) (7/ −)
280 (2/2)(9/9)(5/5)(6/6)(6/6)(5/−) (7/−)
281 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (5/−)
282 (2/2) (9/9) (1 b/−)(6/−)
283 (3/−)(5/−)
284 (2/2) (5/5) (6/6) (8/8) (7/7) (9/9) (7/−)
285 (2/2)(2/−)(7/−)
286 (2/2) (5/5) (6/6) (8/8) (7/7) (5/−) (9/9)

134

APPENDIX C. ABSTRACT TEST CASES FOR TCP

287 (2/2) (9/9) (5/5)(8/8) (3/−) (7/7)
288 (2/2) (9/9) (5/5)(6/6) (4/−) (8/8)
289 (2/2)(5/5)(6/6)(11/ −) (8/8)
290 (2/2)(9/9)(5/5)(8/8)(6/−)(5/−)(8/−)
291 (2/2) (5/5) (1 a/−)(9/−)
292 (2/2)(5/5)(8/8)(11/ −) (9/9)
293 (2/2)(9/9)(5/5)(8/8)(10/ −) (1 a/−)
294 (1b/−)(7/−)
295 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(9/−) (8/ −)
296 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1a/−)(7/−)
297 (2/2)(9/9)(5/5)(8/8)(7/7)(4/−) (8/−)
298 (2/2) (5/5) (6/6) (1 a/−)(6/−)
299 (2/2)(9/9)(11/ −)(6/−)
300 (2/2)(9/9)(5/5)(8/8)(5/ −) (1 a/−)
301 (1b/−)(8/−)
302 (2/2) (9/9) (5/5) (6/6) (6/6) (8/8) (6/−)
303 (1a/−)(8/−)
304 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(9/−) (1 a/−)
305 (2/2)(9/9)(5/5)(8/8)(2/−) (9/−)
306 (9/−)(5/−)
307 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1a/−)(9/−)
308 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(8/ −)(6/ −)
309 (2/2) (9/9) (5/5)(6/6) (6/6) (5/−)
310 (2/2) (9/9) (1 a/−)(7/−)
311 (2/2)(5/5)(6/6)(2/ −) (9/9)
312 (2/2)(5/5)(3/−) (6/6)
313 (3/−)(9/−)
314 (2/2)(9/9)(5/5)(8/8)(6/−)(3/−)(8/−)
315 (2/2)(9/9)(5/5)(8/8)(6/−) (9/−) (6/6)
316 (2/2)(5/5)(8/8)(4/ −) (9/9)
317 (2/2) (9/9) (5/5) (6/6) (6/6) (7/−) (8/8)
318 (2 / 2) (9 / 9) (5/5) (6/6) (1b/−)(5/−)
319 (2 / 2) (9 / 9) (5 /5) (8/8) (7 /7) (6/6) (1a/−)(8/−)
320 (2/2) (5/5) (6/6) (8/8) (7/7) (11/−) (9/9)
321 (2 / 2) (5 / 5) (6/6) (9/9) (8/8)
322 (2 / 2) (9 / 9) (5/5) (8/8) (1b/−)(8/−)
323 (2 / 2) (5 / 5) (6/6) (8/8) (1a/−)(6/−)
324 (2 / 2) (9 / 9) (5/5) (6/6) (6/ 6) (1b/−)(5/−)
325 (2/2)(5/5)(6/6)(8/8)(7/7)(3/−) (8/−)
326 (2/2) (9/9) (5/5)(8/8) (7/7) (5/−)
327 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(5/−) (9/ −)
328 (2/2)(9/9)(5/5)(8/8)(6/−) (9/−) (7/7)
329 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (7/−)
330 (2/2)(9/9)(5/5)(8/8)(6/−) (11/−) (6/6)
331 (2/2)(5/5)(6/6)(8/8)(7/7)(7/−) (6/−)
332 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(9/−) (9/ −)
333 (2/2)(5/5)(8/8)(10/ −) (6/6)
334 (2/2) (9/9) (5/5)(6/6) (6/6) (7/−)
335 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(9/ −)(6/ −)
336 (2/2)(5/5)(8/8)(3/ −) (9/9)
337 (2/2)(7/−)(6/−)

135

APPENDIX C. ABSTRACT TEST CASES FOR TCP

338 (2 / 2) (9 / 9) (5 / 5) (8/8) (7/ 7) (6/6) (1a/−)(5/−)
339 (8/−)(6/−)
340 (2/2) (9/9)(5/5) (3/−) (6/6) (6/6)
341 (2/2)(5/5)(6/6)(5/ −) (9/9)
342 (2/2)(9/9)(5/5)(8/8)(6/−)(2/−)(8/−)
343 (2/2) (5/5) (8/8) (1 b/−)(7/−)
344 (2/2)(5/5)(6/6)(3/ −) (9/9)
345 (2/2) (5/5)(6/6) (8/8) (5/−) (7/7)
346 (2/2)(9/9)(5/5)(8/8)(8/ −)
347 (2/2) (9/9)(5/5) (9/−) (6/6) (6/6)
348 (2 / 2) (5 / 5) (6/6) (8/8) (7/7)
349 (2 / 2) (9 / 9) (5 / 5) (8/8) (7/ 7) (6/6) (1a/−)(7/−)
350 (2/2)(5/5)(6/6)(8/8)(6/−) (6/−)
351 (2/2)(9/9)(8/ −)(9/−)
352 (2/2)(5/5)(6/6)(8/8)(10/ −) (7/7)
353 (2/2) (9/9) (1 b/−)(8/−)
354 (2/2) (5/5) (8/8) (1 a/−)(6/−)
355 (4/−)(6/−)
356 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 a/−)(6/−)
357 (2/2) (9/9) (5/5) (8/8)
358 (2/2)(5/5)(6/6)(8/8)(7/7)(6/−) (8/−)
359 (2 / 2) (9 / 9) (5/5) (6/6) (6/6)
360 (2/2)(9/9)(5/5)(11/−)(9/−)
361 (2/2)(9/9)(5/5)(8/8)(7/7)(5/−) (7/−)
362 (2/2)(3/−)(8/−)
363 (2/2)(9/9)(7/ −)(9/−)
364 (2/2)(5/5)(8/8)(7/7)(11/ −)(8/ −)
365 (2/2)(4/−)(6/−)
366 (2/2) (1 a/−)(8/−)
367 (2/2) (5/5)(8/8) (7/7) (7/−) (9/9)
368 (2/2)(9/9)(5/5)(8/8)(6/−) (2/−) (7/7)
369 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(6/ −) (7/7)
370 (2 / 2) (9 / 9) (5/5) (8/8) (7/7)
371 (2 / 2) (9 / 9) (5 /5) (6/6) (6/6) (1b/−)(7/−)
372 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(9/ −) (7/7)
373 (2/2)(5/5)(6/6)(8/8)(7/7)(6/−) (5/−)
374 (2 / 2) (9 / 9) (5/5) (8 /8) (1a/−)(8/−)
375 (2/2) (9/9) (5/5) (8/8) (7/7) (5/−) (6/6) (6/6)
376 (2/2)(7/−)(8/−)
377 (2/2) (5/5)
378 (2/2) (9/9)(5/5) (6/6) (6/6) (9/−)
379 (2/2)(5/5)(6/6)(3/−)(7/−)
380 (2/2)(11/−)(8/−)
381 (2/2) (9/9)(5/5) (6/6) (2/−) (8/8)
382 (2/2)(9/9)(5/5)(6/6)(6/6)(6/−) (6/−)
383 (2/2)(9/9)(5/5)(6/6)(6/6)(5/−) (6/−)
384 (2 / 2) (5 / 5) (8/8) (7 /7) (1a/−)(7/−)
385 (2/2)(9/9)(5/5)(8/8)(6/−)(11/−)(9/−)
386 (2/2)(5/5)(6/6)(11/−)(6/−)
387 (2/2)(5/5)(5/−) (6/6)
388 (2/2) (5/5) (6/6) (8/8) (7/7) (9/9) (8/−)

136

APPENDIX C. ABSTRACT TEST CASES FOR TCP

389 (7/−)(8/−)
390 (2 / 2) (9 / 9) (5/5) (6/6) (1a/−)(8/−)
391 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(7/7)(6/−)
392 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(10/ −)(9/ −)
393 (2/2) (5/5) (6/6)(8/8) (2/−) (7/7)
394 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(10/ −)(6/ −)
395 (2/2)(5/5)(9/9)(9/−)
396 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(7/−) (8/ −)
397 (2/2)(3/−)(7/−)
398 (2/2)(9/9)(5/5)(8/8)(6/−)(8/−)(9/−)
399 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(4/−) (7/ −)
400 (2/2) (9/9) (1 a/−)(8/−)
401 (5/−)(9/−)
402 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1b/−)(5/−)
403 (2/2)(9/9)(7/ −)
404 (2/2)(9/9)(5/5)(8/8)(11/ −) (1 a/−)
405 (2/2)(9/9)(5/5)(8/8)(6/−)(9/−)(9/−)
406 (2/2)(5/5)(6/6)(8/8)(11/ −)(6/ −)
407 (2/2)(2/−)(8/−)
408 (2/2)(5/5)(6/6)(8/8)(7/7)(4/−) (7/−)
409 (2/2)(5/5)(8/8)(2/ −) (9/9)
410 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(4/ −)(6/ −)
411 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(3/−) (9/ −)
412 (2/2) (5/5) (8/8) (9/9)
413 (2 / 2) (5 / 5) (6 /6) (8/8) (7/7) (9/9)
414 (2/2)(9/9)(11/ −)(7/−)
415 (2/2) (9/9) (5/5) (8/8) (7/7) (2/−) (6/6) (6/6)
416 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 a/−)(8/−)
417 (2/2) (5/5) (6/6)(9/9) (6/6) (6/−)
418 (2/2)(9/9)(5/5)(2/ −) (8/8)
419 (2/2)(5/5)(8/8)(3/ −) (6/6)
420 (2/2)(9/9)(5/5)(10/−)(9/−)
421 (2 / 2) (5 / 5) (6/6) (8/8) (1b/−)(9/−)
422 (2/2)(9/9)(5/5)(6/6)(6/6)(2/−) (7/−)
423 (2/2)(9/9)(5/5)(8/8)(3/−) (6/−)
424 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(2/−) (7/ −)
425 (2/2) (1 a/−)(7/−)
426 (2/2)(6/−)(8/−)
427 (2/2) (5/5) (6/6)(8/8) (8/−) (7/7)
428 (2/2)(9/9)(5/5)(6/6)(9/−) (9/−)
429 (2/2)(9/9)(10/ −)(8/−)
430 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1a/−)(5/−)
431 (2 / 2) (5 / 5) (6/6) (8/8) (1a/−)(5/−)
432 (2/2)(9/9)(5/5)(8/8)(6/−) (9/−)
433 (2/2)(8/−)(5/5)
434 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(7/7)(9/−)
435 (2/2)(5/5)(6/6)(8/8)(7/7)(5/−) (5/−)
436 (2/2) (9/9) (1 b/−)(5/−)
437 (2 / 2) (5 / 5) (8 /8) (7/7) (6/6) (9/9)
438 (2/2)(9/9)(8/ −)(7/−)
439 (2/2)(9/9)(5/5)(8/8)(7/7)(3/−) (7/−)

137

APPENDIX C. ABSTRACT TEST CASES FOR TCP

440 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(3/ −)(6/ −)
441 (2/2) (5/5)(8/8) (7/7) (3/−) (9/9)
442 (2 / 2) (9 / 9) (5/5) (8 /8) (1b/−)(6/−)
443 (2/2)(9/9)(3/ −)(7/−)
444 (2/2)(9/9)(5/5)(7/−)
445 (2/2)(5/5)(6/6)(7/−)
446 (2/2) (9/9) (5/5) (8/8) (7/7) (3/−) (6/6) (6/6)
447 (1b/−)(5/−)
448 (2 / 2) (5 / 5) (6/6) (8 /8) (1b/−)(6/−)
449 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(8/ −) (6/6)(6/ −)
450 (2 / 2) (5 / 5) (8/8) (7 /7) (1a/−)(8/−)
451 (2 / 2) (5 / 5) (6/6) (8 /8) (1a/−)
452 (2/2)(9/9)(5/5)(8/8)(6/−) (3/−) (7/7)
453 (2/2)(4/ −)(5/5)
454 (2/2)(9/9)(4/ −)(9/−)
455 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(3/−) (8/ −)
456 (2/2) (9/9)(5/5) (6/6) (6/6) (6/−)
457 (2 / 2) (5 / 5) (8/8) (6/6) (9/9)
458 (5/−)(5/−)
459 (2/2)(5/5)(6/6)(8/8)(7/7)(7/−) (8/−)
460 (2/2) (5/5)(8/8) (7/7) (9/9) (8/−)
461 (2 / 2) (5 / 5) (8/8) (9 /9) (1a/−)
462 (2/2)(5/5)(6/6)(8/8)(11/ −) (7/7)
463 (2 / 2) (9 / 9) (5 / 5) (8/8) (7/ 7) (6/6) (1b/−)(7/−)
464 (2/2)(9/9)(6/ −)(7/−)
465 (1b/−)(9/−)
466 (2 / 2) (9 / 9) (5/5) (6 /6) (1b/−)(8/−)
467 (2/2) (5/5)(8/8) (7/7) (8/−) (6/6)
468 (2/2)(2/−)(6/−)
469 (2 / 2) (5 / 5) (8/8) (7 /7) (1a/−)
470 (2/2)(9/9)(5/5)(8/8)(6/−)(3/−)(9/−)
471 (2/2)(9/9)(5/5)(6/6)(2/−) (6/6)(6/−)
472 (2/2) (5/5) (8/8) (1 b/−)(5/−)
473 (2 / 2) (9 / 9) (5 /5) (6/ 6) (6/6) (8/8) (7/7)
474 (2 / 2) (9 / 9) (5 / 5) (8/8) (7/ 7) (6/6) (1b/−)(8/−)
475 (2/2) (5/5) (8/8) (1 a/−)(7/−)
476 (2/2)(9/9)(5/5)(6/6)(6/6)(10/−) (9/−)
477 (2 / 2) (5 / 5) (6 /6) (8/8) (7/7) (1b/−)(5/−)
478 (2/2)(9/9)(5/5)(8/8)(6/−) (7/7)(8/−)
479 (2 / 2) (5 / 5) (6 /6) (8/8) (7/7) (1b/−)(6/−)
480 (2 / 2) (9 / 9) (5 /5) (6/6) (6/6) (1b/−)(8/−)
481 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(3/ −)(9/ −)
482 (9/−)(6/−)
483 (2/2) (5/5) (6/6) (8/8) (7/7) (3/−) (9/9)
484 (2/2)(5/5)(8/8)(4/−)(8/−)
485 (2/2) (1 a/−)(5/−)
486 (2/2)(9/9)(8/ −)
487 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (8/−)
488 (2 / 2) (9 / 9) (5 / 5) (8/8) (7/ 7) (6/6) (1a/−)
489 (1 a/−)(5/−)
490 (2/2)(9/9)(5/5)(8/8)(7/7)(4/−) (7/−)

138

APPENDIX C. ABSTRACT TEST CASES FOR TCP

491 (2/2)(9/9)(5/5)(7/−)(9/−)
492 (2/2)(9/9)(3/ −)(8/−)
493 (5/−)(6/−)
494 (2/2) (9/9) (5/5) (8/8) (7/7) (8/−) (6/6) (6/6)
495 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(5/ −)(6/ −)
496 (2/2)(5/5)(6/6)(2/−)(7/−)
497 (2/2) (9/9) (5/5)(6/6) (9/−) (8/8)
498 (2 / 2) (5 / 5) (8/8) (7/7) (1b/−)(7/−)
499 (2 / 2) (5 / 5) (6/6) (8/8) (1a/−)(9/−)
500 (2/2)(5/5)(8/8)(7/7)(8/−) (7/−)
501 (2/2) (5/5) (6/6) (1 b/−)(6/−)
502 (2/2)(9/9)(5/5)(8/8)(9/−) (6/−)
503 (2/2)(9/9)(5/5)(6/6)(6/6)(10/−) (7/−)
504 (2/2) (5/5) (8/8) (1 b/−)(6/−)
505 (2 / 2) (5 / 5) (6/6) (8/8) (1b/−)(5/−)
506 (2/2)(9/9)(5/5)(8/8)(7/7)(7/−) (7/−)
507 (2/2)(9/9)(5/5)(6/6)(5/ −)
508 (2 / 2) (5 / 5) (8/8) (7/7) (9/9)
509 (2/2)(5/5)(6/6)(8/8)(8/−) (6/−)
510 (2/2)(9/9)(5/5)(8/8)(9/ −)
511 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(3/−) (1 a/−)
512 (2/2)(9/9)(5/5)(6/6)(6/6)(3/−) (7/−)
513 (2/2)(9/9)(5/5)(8/8)(6/−) (7/7)(7/−)
514 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(10/−) (7/ −)
515 (2 / 2) (9 / 9) (5/5) (6/6) (6/ 6) (1a/−)(7/−)
516 (1a/−)
517 (2/2)(10/−)(6/−)
518 (2/2)(3/−)(5/5)
519 (2/2) (5/5) (6/6) (1 b/−)(5/−)
520 (2/2)(5/5)(6/6)(8/8)(10/ −)(6/ −)
521 (2/2)(5/5)(6/6)(4/ −) (9/9)
522 (2/2) (9/9) (5/5) (8/8) (7/7) (9/−) (6/6) (6/6)
523 (2/2)(9/9)(5/5)(8/8)(7/7)(10/−) (8/−)
524 (2/2)(5/5)(8/8)(7/7)(2/−) (8/−)
525 (2/2)(8/−)(7/−)
526 (2/2)(5/5)(10/−) (8/8)
527 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(9/−) (7/ −)
528 (2/2)(9/9)(10/ −)(9/−)
529 (2/2)(9/9)(4/ −)(6/−)
530 (2/2) (5/5) (6/6)(8/8) (7/7) (7/−)
531 (2/2) (9/9) (5/5) (1 b/−)(5/−)
532 (2 / 2) (5 / 5) (8/8) (6/6) (7/7)
533 (2/2) (9/9) (5/5) (8/8) (6/−) (6/6) (1a/−)
534 (2/2)(9/9)(9/ −)
535 (2/2) (5/5) (6/6)(8/8) (7/7) (6/−)
536 (2/2)(5/5)(6/6)(8/8)(10/ −) (9/9)
537 (11/−)(7/−)
538 (2/2) (5/5) (6/6)
539 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1b/−)(8/−)
540 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(7/−) (9/ −)
541 (2/2)(9/9)(5/5)(6/6)(3/−) (6/6)(6/−)

139

APPENDIX C. ABSTRACT TEST CASES FOR TCP

542 (2/2) (5/5)(8/8) (7/7) (8/−) (9/9)
543 (2/2)(9/9)(5/5)(6/6)(6/6)(7/−) (9/−)
544 (2/2)(5/5)(6/6)(8/8)(7/7)(4/−) (8/−)
545 (2/2)(9/9)(5/5)(8/8)(7/7)(2/−) (9/−)
546 (2 / 2) (9 / 9) (5 /5) (6/6) (6/6) (1b/−)(9/−)
547 (2/2) (5/5)(6/6) (8/8) (7/7) (8/−)
548 (2/2)(9/9)(5/5)(8/8)(3/ −) (1 a/−)
549 (2/2)(5/5)(8/8)(7/7)(3/−) (8/−)
550 (2/2) (5/5) (6/6) (8/8) (7/7) (4/−) (9/9)
551 (2/2)(5/5)(6/6)(8/8)(7/7)(10/−) (7/−)
552 (2/2)(9/9)(5/5)(8/8)(6/−) (8/−) (6/6)
553 (2/2) (1 a/−)(9/−)
554 (2/2) (9/9) (5/5) (8/8) (7/7) (11/−) (6/6) (6/6)
555 (2 / 2) (9 / 9) (5 / 5) (8/8) (7/ 7) (6/6) (1b/−)(9/−)
556 (2/2) (9/9)(5/5) (8/8) (7/7) (7/−)
557 (2/2)(6/−)
558 (10/−)(5/−)
559 (2/2)(4/ −)(9/9)
560 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(8/−) (9/ −)
561 (2 / 2) (5 / 5) (6 /6) (8/8) (7/7) (1a/−)(8/−)
562 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 a/−)(7/−)
563 (2/2) (5/5) (1 b/−)(5/−)
564 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(4/ −) (6/6)(6/ −)
565 (4/−)(5/−)
566 (2/2)(5/5)(6/6)(8/8)(7/7)(2/−) (8/−)
567 (2/2) (9/9) (5/5) (1 a/−)(7/−)
568 (2/2)(5/5)(6/6)(8/8)(7/7)(4/−) (6/−)
569 (2/2)(5/5)(8/8)(8/−)(8/−)
570 (2/2)(5/5)(8/8)(3/−)(8/−)
571 (2/2) (5/5) (6/6) (1 a/−)(8/−)
572 (2/2)(9/9)(5/5)(6/6)(10/ −)(9/ −)
573 (2/2)(9/9)(5/5)(6/6)(6/6)(6/−) (7/−)
574 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(4/−) (1 a/−)
575 (2/2)(5/5)(6/6)(10/ −) (9/9)
576 (2/2)(9/9)(5/5)(6/6)(3/−) (9/−)
577 (2 / 2) (5 / 5) (6 /6) (8/8) (7/7) (1b/−)(8/−)
578 (2/2) (9/9)
579 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(11/−) (8/ −)
580 (2/2)(11/−)(5/5)
581 (2 / 2) (5 / 5) (8/8) (7 /7) (1b/−)(5/−)
582 (2/2) (9/9)(5/5) (7/−) (6/6) (6/6)
583 (9/−)(8/−)
584 (2 / 2) (5 / 5) (6 /6) (8/8) (7/7) (1a/−)(5/−)
585 (2/2)(5/5)(8/8)(7/7)(2/−) (7/−)
586 (2/2)(9/9)(5/5)(8/8)(9/−) (9/−)
587 (2/2)(9/9)(5/5)(8/8)(7/7)(8/−) (9/−)
588 (2/2)(5/5)(8/8)(2/ −) (6/6)
589 (2/2)(5/5)(8/8)(10/ −) (9/9)
590 (2/2) (5/5) (6/6) (8/8) (7/7) (6/−) (9/9)
591 (2/2)(5/5)(11/−) (6/6)
592 (2/2)(9/9)(3/ −)(9/−)

140

APPENDIX C. ABSTRACT TEST CASES FOR TCP

593 (2/2)(9/9)(5/5)(8/8)(6/−) (4/−) (7/7)
594 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1a/−)
595 (2/2) (1b/−)(5/−)
596 (6/−)(7/−)
597 (2 / 2) (9 / 9) (5 /5) (6/6) (6/6) (8/8)
598 (2/2)(9/9)(5/5)(8/8)(6/−) (3/−) (6/6)
599 (7/−)
600 (2/2) (9/9) (1 a/−)(9/−)
601 (2/2)(5/5)(6/6)(11/ −) (9/9)
602 (2/2)(5/5)(6/6)(8/8)(7/7)(3/−) (5/−)
603 (1a/−)(6/−)
604 (2/2)(9/9)(6/ −)(9/−)
605 (10/−)(8/−)
606 (2/2) (5/5) (8/8) (6/6)
607 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(6/−) (1 a/−)
608 (2 / 2) (9 / 9) (5 /5) (8/8) (7 /7) (6/6) (1a/−)(6/−)
609 (2/2)(9/9)(5/5)(8/8)(7/7)(2/−) (8/−)
610 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(6/ −)(6/ −)
611 (2/2)(5/5)(8/8)(7/7)(5/−) (7/−)
612 (2/2)(9/9)(9/−) (5/5)
613 (2/2)(6/−)(5/5)
614 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 b/−)(6/−)
615 (2/2)(9/9)(5/5)(8/8)(7/7)(2/−) (7/−)
616 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(9/−)
617 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(5/ −) (6/6)(6/ −)
618 (2/2)(5/5)(8/8)(7/7)(11/ −) (9/9)
619 (2/2)(9/9)(5/5)(9/−)
620 (2/2)(7/−)(9/9)
621 (2/2)(5/5)(6/6)(8/8)(7/7)(8/−) (7/−)
622 (2/2)(5/5)(6/6)(8/8)(7/7)(4/−) (5/−)
623 (2/2)(9/9)(5/5)(8/8)(7/7)(3/−) (9/−)
624 (2/2)(9/9)(5/5)(8/8)(10/ −)(9/ −)
625 (2/2)(9/9)(5/5)(6/6)(6/6)(9/−) (7/−)
626 (2/2) (9/9) (5/5) (6/6) (6/6) (11/−) (8/8)
627 (2 / 2) (5 / 5) (6/6) (8/8) (1a/−)(8/−)
628 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(11/ −)(9/ −)
629 (2/2) (5/5) (8/8)(7/7) (9/9) (7/−)
630 (2/2) (5/5) (6/6)(8/8) (6/−) (7/7)
631 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (6/6) (8/−)
632 (2/2) (5/5) (8/8)(7/7) (4/−) (9/9)
633 (2/2)(9/9)(5/5)(6/6)(4/−) (6/6)(6/−)
634 (2/2) (9/9) (5/5) (1 a/−)(9/−)
635 (2/2) (9/9) (5/5) (6/6) (6/6) (8/8) (9/−)
636 (2/2)(9/9)(2/ −)(7/−)
637 (2/2) (5/5) (8/8)
638 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(11/ −)(6/ −)
639 (2/2)(5/5)(8/8)(7/7)(5/−) (8/−)
640 (2/2)(5/5)(11/−) (8/8)
641 (2/2)(5/5)(6/6)(3/ −) (8/8)
642 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1a/−)(8/−)
643 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(8/−) (8/ −)

141

APPENDIX C. ABSTRACT TEST CASES FOR TCP

644 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(2/−) (9/ −)
645 (2/2)(9/9)(5/5)(6/6)(4/−) (9/−)
646 (2/2) (9/9)(5/5) (8/8) (6/−) (7/7)
647 (2/2)(9/9)(5/5)(6/6)(5/−) (9/−)
648 (2/2)(9/9)(5/5)(8/8)(6/−)(11/−)(8/−)
649 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(2/−) (1 a/−)
650 (2/2)(9/9)(5/5)(6/6)(7/ −)
651 (2/2) (9/9) (1 b/−)(7/−)
652 (2/2)(9/9)(5/5)(8/8)(11/ −)(6/ −)
653 (2/2)(5/5)(8/8)(5/−)(8/−)
654 (2/2) (9/9) (5/5) (1 b/−)(7/−)
655 (2/2)(2/ −)(9/9)
656 (2/2)(9/9)(5/5)(6/6)(6/6)(2/−) (6/−)
657 (2/2)(9/9)(5/5)(8/8)(6/−)(10/−)(8/−)
658 (2/2)(10/−)(9/9)
659 (2/2)(9/9)(5/5)(8/8)(6/ −)
660 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(8/−)
661 (2/2)(5/5)(6/6)(8/8)(11/ −) (9/9)
662 (2 / 2) (9 / 9) (5 / 5) (8/8) (7/ 7) (6/6) (1b/−)(5/−)
663 (2/2)(9/9)(5/5)(8/8)(7/7)(3/−) (8/−)
664 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(4/ −)(9/ −)
665 (2/2)(5/5)(6/6)(8/8)(4/−) (6/−)
666 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(10/−) (8/ −)
667 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 a/−)
668 (2/2)(9/9)(5/5)(8/8)(6/−) (7/7)(6/6)(6/ −)
669 (2/2)(9/9)(5/5)(9/ −) (8/8)
670 (2/2)(9/9)(5/5)(8/8)(6/−)(5/−)(9/−)
671 (2/2)(5/5)(7/−) (6/6)
672 (2 / 2) (5 / 5) (6 /6) (8/8) (7/7) (1a/−)(7/−)
673 (2/2) (5/5)(8/8) (7/7) (4/−) (6/6)
674 (2/2)(9/9)(5/5)(8/8)(2/ −) (1 a/−)
675 (2/2) (5/5) (9/9)
676 (2/2)(8/−)(6/−)
677 (2 / 2) (9 / 9) (5/5) (6 /6) (1a/−)(6/−)
678 (2 / 2) (9 / 9) (5/5) (8 /8) (1a/−)(5/−)
679 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (6/6) (6/−)
680 (2/2) (1 a/−)
681 (2/2)(9/9)(5/5)(6/6)(6/6)(3/−) (9/−)
682 (2 / 2) (9 / 9) (5 /5) (6/6) (6/6) (1a/−)(6/−)
683 (2/2) (9/9)(5/5) (2/−) (6/6) (6/6)
684 (2/2) (9/9) (5/5) (6/6) (6/6) (10/−) (8/8)
685 (2/2)(9/9)(5/5)(8/8)(7/7)(9/−) (8/−)
686 (2/2)(9/9)(5/5)(3/−)(9/−)
687 (2/2)(9/9)(4/ −)(7/−)
688 (2/2)(5/5)(6/6)(8/8)(7/7)(10/−) (8/−)
689 (2/2)(5/5)(8/8)(5/ −) (7/7)
690 (8/−)(9/−)
691 (2 / 2) (9 / 9) (5/5) (8 /8) (1a/−)
692 (2/2) (9/9) (1 a/−)
693 (2/2)(5/5)(8/8)(11/−)(8/−)
694 (2/2)(9/9)(6/ −)(6/−)

142

APPENDIX C. ABSTRACT TEST CASES FOR TCP

695 (2/2)(9/9)(5/5)(11/ −) (6/6)(6/6)
696 (2/2)(9/9)(8/ −)(8/−)
697 (2 / 2) (9 / 9) (5/5) (6/6) (8/8)
698 (2 / 2) (9 / 9) (5 /5) (8/8) (7 /7) (6/6) (1b/−)(6/−)
699 (2 / 2) (9 / 9) (5/5) (8/8) (1b/−)(7/−)
700 (2/2)(5/5)(8/8)(7/7)(11/ −)(7/ −)
701 (2/2) (5/5) (6/6) (8/8) (7/7) (2/−) (9/9)
702 (8/−)(8/−)
703 (2 / 2) (9 / 9) (5/5) (8/8) (7/ 7) (1b/−)(9/−)
704 (2/2)(9/9)(5/5)(8/8)(6/−)(9/−)(8/−)
705 (10/−)(9/−)
706 (2 / 2) (9 / 9) (5/5) (6/6) (1a/−)
707 (2/2) (9/9) (5/5)(8/8) (6/−) (6/6)
708 (2/2)(5/5)(8/8)(3/ −) (7/7)
709 (2/2) (5/5) (8/8)(7/7) (2/−) (6/6)
710 (2/2)(5/5)(6/6)(8/8)(5/ −)
711 (2/2)(9/9)(5/5)(8/8)(10/ −)(6/ −)
712 (2 / 2) (5 / 5) (6/6) (8/8) (7/ 7) (1b/−)(9/−)
713 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(8/ −)(9/ −)
714 (2/2)(5/5)(8/8)(7/7)(3/−) (7/−)
715 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(3/ −) (7/7)
716 (2 / 2) (5 / 5) (8/8) (7/7) (1b/−)(6/−)
717 (2/2)(5/5)(8/8)(7/7)(11/ −) (6/6)
718 (2/2)(9/9)(5/5)(8/8)(6/−) (10/−) (7/7)
719 (2/2)(3/−)(6/−)
720 (2/2)(9/9)(5/5)(6/6)(2/−) (9/−)
721 (2/2) (9/9) (5/5) (1 a/−)(6/−)
722 (2 / 2) (5 / 5) (8/8) (9/9) (7/7)
723 (2/2)(9/9)(5/5)(8/8)(5/−) (6/−)
724 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(6/−)
725 (2/2)(5/5)(6/6)(4/−)(6/−)
726 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(2/ −)(6/ −)
727 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(10/−) (1 a/−)
728 (2 / 2) (9 / 9) (5 /5) (6/6) (8/8) (6/6)
729 (2/2)(9/9)(5/5)(6/6)(6/6)(3/−) (6/−)
730 (2/2) (5/5) (6/6)(8/8) (9/9) (8/−)
731 (2/2)(5/5)(6/6)(3/−)(6/−)
732 (2/2)(5/5)(6/6)(8/8)(7/7)(8/−) (5/−)
733 (2/2)(5/5)(6/6)(4/ −) (8/8)
734 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(2/ −)(9/ −)
735 (6/−)(5/−)
736 (2/2) (5/5) (6/6) (8/8) (7/7) (9/9) (9/−)
737 (2/2)(9/9)(5/5)(8/8)(6/−) (11/−) (7/7)
738 (2 / 2) (5 / 5) (6/6) (8/8) (7/ 7) (1a/−)
739 (2/2)(9/9)(5/5)(9/−)(9/−)
740 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(10/−) (7/7)
741 (2/2) (9/9) (5/5)(8/8) (7/7) (8/−)
742 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (9/−)
743 (2/2)(5/5)(6/6)(8/8)(7/7)(7/−) (5/−)
744 (2/2)(9/9)(3/ −)(6/−)
745 (2/2)(5/5)(8/8)(9/9)(6/ −)

143

APPENDIX C. ABSTRACT TEST CASES FOR TCP

746 (2/2) (5/5) (6/6) (8/8) (7/7) (10/−) (9/9)
747 (1 a/−)(7/−)
748 (2/2)(5/5)(10/−) (6/6)
749 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(10/ −) (6/6)(6/ −)
750 (2 / 2) (5 / 5) (6 /6) (8/8) (7/7) (1a/−)(9/−)
751 (2/2)(9/9)(5/5)(10/ −) (6/6)(6/6)
752 (2/2) (1b/−)(6/−)
753 (2/2)(9/9)(11/ −)(8/−)
754 (2 / 2) (9 / 9) (5/5) (8 /8) (1b/−)(9/−)
755 (5/−)(8/−)
756 (2/2)(5/5)(6/6)(10/−)(6/−)
757 (2/2) (9/9) (5/5) (1 b/−)(9/−)
758 (2/2)(9/9)(5/5)(6/6)(7/−) (6/6)(6/−)
759 (2/2)(9/9)(5/5)(6/6)(6/6)(4/−) (7/−)
760 (2/2)(9/9)(5/5)(6/6)(11/ −)(9/ −)
761 (2/2)(5/5)(6/6)(8/8)(7/7)(11/−) (5/−)
762 (2/2)(9/9)(6/−) (5/5)
763 (2 / 2) (5 / 5) (6/6) (8 /8) (1b/−)(8/−)
764 (2/2)(9/9)(5/5)(8/8)(7/7)(9/−) (7/−)
765 (2/2) (5/5) (6/6) (1 a/−)
766 (2/2) (5/5) (6/6) (1 b/−)(8/−)
767 (2 / 2) (5 / 5) (8/8) (7 /7) (1a/−)(5/−)
768 (2/2)(5/5)(6/6)(8/8)(7/7)(5/−) (7/−)
769 (9/−)(7/−)
770 (2/2) (1 a/−)(6/−)
771 (2/2)(9/9)(9/ −)(6/−)
772 (2/2)(5/5)(5/ −)
773 (2/2)(9/9)(5/5)(5/−)(9/−)
774 (2/2)(9/9)(5/5)(8/8)(7/7)(10/−) (9/−)
775 (2/2) (5/5)(6/6) (8/8) (3/−) (9/9)
776 (2/2)(9/9)(5/5)(8/8)(3/−) (9/−)
777 (2/2)(9/9)(5/5)(6/6)(6/6)(7/−) (6/−)
778 (2/2)(9/9)(5/5)(5/ −) (8/8)
779 (2/2) (9/9)(5/5) (8/8) (9/−) (7/7)
780 (2/2) (9/9) (5/5) (1 a/−)
781 (2/2)(5/5)(8/8)(7/7)(7/−) (7/−)
782 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(3/−) (7/ −)
783 (2/2)(9/9)(5/5)(8/8)(8/−) (9/−)
784 (2/2)(5/5)(6/6)(2/−)(6/−)
785 (11/−)(9/−)
786 (2/2)(9/9)(5/5)(6/6)(7/−) (9/−)
787 (2 / 2) (9 / 9) (5 /5) (6/6) (6/6) (1a/−)(8/−)
788 (2/2)(9/9)(5/5)(8/8)(8/−) (6/−)
789 (2/2)(5/5)(8/8)(5/−)
790 (2/2)(9/9)(5/5)(6/6)(6/6)(11/−) (6/−)
791 (2/2) (5/5)(6/6) (8/8) (7/7) (5/−)
792 (2/2)(9/9)(5/5)(8/8)(6/−)(4/−)(8/−)
793 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 b/−)(9/−)
794 (2 / 2) (9 / 9) (5/5) (6 /6) (8/8) (7/7)
795 (2/2) (5/5) (1 b/−)(8/−)
796 (5/−)

144

APPENDIX C. ABSTRACT TEST CASES FOR TCP

797 (2 / 2) (5 / 5) (8/8) (7/7) (1a/−)(9/−)
798 (2/2)(5/5)(6/6)(8/8)(7/7)(5/−) (6/−)
799 (2 / 2) (9 / 9) (5/5) (6/6) (1b/−)(9/−)
800 (2 / 2) (9 / 9) (5/5) (6/6) (6/ 6) (1b/−)(6/−)
801 (2/2)(7/−)(7/−)
802 (2/2) (5/5) (6/6)(8/8) (9/9) (9/−)
803 (2 / 2) (9 / 9) (5 /5) (8/8) (7/7) (6/6)
804 (2/2)(9/9)(5/5)(4/ −) (8/8)
805 (2/2)(9/9)(5/5)(8/8)(7/7)(7/−) (9/−)
806 (2/2)(9/9)(5/5)(6/6)(11/ −) (8/8)
807 (2/2)(9/9)(5/5)(8/8)(8/ −) (1 a/−)
808 (2/2) (9/9) (5/5) (1 a/−)(5/−)
809 (2/2) (5/5) (6/6) (1 a/−)(5/−)
810 (2/2)(9/9)(5/5)(6/6)(6/6)(9/−) (6/−)
811 (2/2) (5/5) (8/8)(7/7) (5/−) (6/6)
812 (2/2) (5/5) (8/8) (1 b/−)(9/−)
813 (2/2) (5/5) (8/8)(7/7) (2/−) (9/9)
814 (6/−)
815 (2/2)(5/5)(6/6)(8/8)(7/7)(8/−) (8/−)
816 (2/2)(5/5)(10/−) (9/9)
817 (2/2) (9/9) (5/5)
818 (2/2)(9/9)(6/ −)
819 (2/2) (5/5) (6/6)(8/8) (2/−) (9/9)
820 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (6/6) (5/−)
821 (2/2)(9/9)(5/5)(6/6)(6/6)(9/−) (9/−)
822 (2 / 2) (5 / 5) (9/9) (6/6) (6/6)
823 (2/2)(5/5)(6/6)(6/ −) (9/9)
824 (2/2)(8/−)(9/9)
825 (2/2)(5/5)(5/−) (9/9)
826 (2/2)(9/9)(5/5)(6/6)(6/6)(6/−) (9/−)
827 (2/2)(5/5)(6/6)(8/8)(7/7)(10/−) (5/−)
828 (11/−)(6/−)
829 (2/2)(5/5)(3/−) (9/9)
830 (2/2)(9/9)(5/5)(6/6)(6/6)(4/−) (6/−)
831 (2/2)(5/5)(6/6)(10/ −) (8/8)
832 (2/2)(9/9)(5/5)(7/ −) (8/8)
833 (2/2)(5/5)(8/8)(7/7)(7/−) (8/−)
834 (2/2) (9/9) (5/5)(6/6) (7/−) (8/8)
835 (2/2)(5/5)(6/6)(10/−)(7/−)
836 (2/2) (9/9) (5/5)(6/6) (8/8) (9/−)
837 (2/2)(5/5)(6/6)(6/−)(7/−)
838 (2/2) (9/9) (5/5)(8/8) (7/7) (9/−)
839 (2/2) (9/9) (1 a/−)(5/−)
840 (2/2) (5/5) (1 b/−)(6/−)
841 (2/2) (9/9) (5/5) (8/8) (7/7) (6/6) (6/6) (9/−)
842 (2/2)(5/5)(8/8)(7/7)(10/ −)(8/ −)
843 (2 / 2) (9 / 9) (5/5) (8/8) (1a/−)(6/−)
844 (2/2)(9/9)(5/5)(8/8)(7/7)(8/−) (7/−)
845 (2/2)(9/9)(5/5)(8/8)(6/−)(2/−)(9/−)
846 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(9/ −) (6/6)(6/ −)
847 (2/2)(9/9)(5/5)(2/−)(9/−)

145

APPENDIX C. ABSTRACT TEST CASES FOR TCP

848 (2/2) (5/5) (8/8) (1 a/−)(9/−)
849 (2/2)(5/5)(8/8)(8/ −) (7/7)
850 (2/2)(9/9)(11/ −)(9/−)
851 (2/2)(5/5)(8/8)(8/ −) (9/9)
852 (2/2)(5/5)(8/8)(11/ −) (6/6)
853 (2/2) (1b/−)(7/−)
854 (2/2)(10/−)(8/−)
855 (2/2)(9/9)(9/ −)(9/−)
856 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(11/−) (1 a/−)
857 (2/2)(9/9)(5/5)(8/8)(10/ −) (7/7)
858 (2/2)(9/9)(5/5)(8/8)(9/ −) (1 a/−)
859 (2/2)(9/9)(5/5)(8/8)(7/7)(6/6)(2/−) (8/ −)
860 (2 / 2) (5 / 5) (6/6) (8/8) (9/9)
861 (2/2) (5/5) (8/8) (7/7)
862 (2/2)(9/9)(5/5)(6/6)(10/ −) (8/8)
863 (2/2) (5/5) (6/6) (8/8)
864 (2/2) (9/9)(5/5) (8/8) (4/−) (7/7)
865 (2/2)(5/5)(8/8)(2/ −) (7/7)
866 (2/2)(9/9)(5/5)(8/8)(6/ −) (1 b/−)(8/−)
867 (2/2)(5/5)(6/6)(8/8)(7/7)(5/−) (8/−)
868 (2/2)(5/5)(6/6)(7/−)(7/−)
869 (2/2)(9/9)(5/5)(8/8)(6/−) (4/−) (6/6)
870 (2/2)(9/9)(7/ −)(7/−)
871 (2/2)(5/5)(2/−) (9/9)
872 (2 / 2) (9 / 9) (5/5) (6 /6) (1a/−)(5/−)
873 (2/2) (5/5) (6/6) (1 b/−)(9/−)
874 (2/2) (5/5) (6/6) (8/8) (7/7) (9/9) (6/6) (6/−)
875 (8/−)
876 (8/−)(5/−)
877 (2/2)(7/−)
878 (4/−)(8/−)
879 (2/2)(9/9)(5/5)(8/8)(6/−) (6/6)(5/ −) (7/7)
880 (2/2)(5/5)(6/6)(5/−)(7/−)
881 (2/2)(5/5)(6/6)(8/8)(7/7)(6/−) (6/−)
882 (2/2)(9/9)(5/5)(8/8)(6/ −)(6/6)(9/ −)(9/ −)

146

Appendix D

A small iptables HOWTO

This small HOWTO should help understanding the iptables examples in this thesis. For
more information please refer to [And].

Every iptables rule looks like the following:
iptables [-t table] command [match] [target/jump]

In iptables, three different tables exist (nat, mangle, filter) of which we just use filter

(the default) which is used for filtering rules. For every table there are a number of
built-in chains (between 3 and 5 out of PREROUTING, INPUT, FORWARD, OUT-
PUT, POSTROUTING) from which we only consider INPUT, FORWARD and OUTPUT
which are the built-in chains of the filter table. The INPUT chain is for packets destined
for the firewall (source → firewall), the OUTPUT chain is for packets originating from the
firewall (firewall→ destination), and the FORWARD chain is for packets passing the firewall
(source → destination, via firewall). Other chains can be created by the user, but we will
not say anything about this.

some commands:
meaning example

-F flush (delete) all rules (from the given chain) iptables -F input

-X delete given chain (which must be empty) iptables -X mychain

(if no argument given: delete all user-defined chains)
-P set given policy as default for given chain iptables -P INPUT DROP

-A append the following rule to the given chain iptables -A INPUT ...

147

APPENDIX D. A SMALL IPTABLES HOWTO

some matches:
match meaning (matches packets ...) example
-p ... with the given protocol iptables -p tcp ...

(e.g. tcp, udp, icmp)
-s ... with the given source IP iptables ... -s

129.132.178.26

-d ... with the given destination IP iptables ... -d

127.0.0.1

--sport ... with the given source port iptables ... -p tcp

--sport ssh ...

(only with ’-p tcp’ or ’-p udp’)
--dport ... with the given destination port iptables ... -p udp

--dport 68 ...

(only with ’-p tcp’ or ’-p udp’)
--syn ... with the syn flag set iptables ... -p tcp

--syn ...

(only with ’-p tcp’)
-m state --state ... which are in the given state(s) iptables ... -m state

--state NEW ...

states (to be used with the state-match):
For every connection — identified by (source ip, destination ip, source port, destination
port) — the corresponding state is remembered by the firewall.
state meaning
NEW as long as the connection is only one-way
ESTABLISHED connections that have already seen packets in both directions
RELATED new connections associated with an ESTABLISHED one (e.g. ftp data)
INVALID most of the time faulty data or headers (should be rejected)

some targets:
There are a lot of possibilities to use targets/jumps. We only explain the simplest two:
target meaning
-j ACCEPT accept the packet (let it pass the firewall) and stop processing
-j DROP drop the packet and stop processing

148

Bibliography

[ABC82] W. Richards Adrion, Martha A. Branstad, and John C. Cherniavsky. Vali-
dation, verification, and testing of computer software. pages 159 – 192. ACM
Press New York, NY, USA, June 1982.

[And] Oskar Andreasson. Iptables tutorial 1.1.19.
http://iptables-tutorial.frozentux.net/iptables-tutorial.html.

[ASH03] Ehab Al-Shaer and Hazem Hamed. Management and translation of filtering
security policies. In Proc. 38th Int. Conf. Communications (ICC 2003), IEEE,
pages 256– 260, May 2003.

[Aud06] AuditMyPc.com. Firewall test.
http://www.auditmypc.com/firewall-test.asp, 2006.

[BA82] Timothy A. Budd and Dana Angluin. Two notions of correctness and their
relation to testing. In Acta Informatica, volume 18, pages 31 – 45, November
1982.

[BCG+01] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao, D. Rosenbluth, A.V.
Surendran, and D.M. Martin. Automatic management of network security
policy. In Proceedings of DISCEX II, 2001.

[BCMG01] Karthikeyan Bhargavan, Satish Chandra, Peter J. McCann, and Carl A.
Gunter. What packets may come: automata for network monitoring. In
POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 206–219, New York, NY, USA,
2001. ACM Press.

[BL73] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Mathe-
matical foundations. MITRE Technical Report 2547, Volume I, March 1973.

[BMNW99] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato:
A novel firewall management toolkit. In IEEE Symposium on Security and
Privacy, pages 17–31, 1999.

149

http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://www.auditmypc.com/firewall-test.asp

BIBLIOGRAPHY BIBLIOGRAPHY

[BMNW03] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A
novel firewall management toolkit. Technical report, Dept. Electrical Engi-
neering Systems, Tel Aviv University, Ramat Aviv 69978 Israel, February
2003.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines. In
IEEE Transactions on Software Engineering, Vol. SE-4, No 3, pages 178–187,
May 1978.

[CN98] S. Deering (Cisco) and R. Hinden (Nokia). RFC 2460: Internet protocol,
version 6 (IPv6), December 1998.

[CVI89] Wendy Y. L. Chan, Son T. Vuong, and M. Robert Ito. An improved protocol
test generation procedure based on UIOS. In SIGCOMM ’89: Symposium pro-
ceedings on Communications architectures & protocols, pages 283–294, New
York, NY, USA, 1989. ACM Press.

[Dij70] Edsger W. Dijkstra. Notes on structured programming. T.h.-report 70-wsk-
03, Technological University Eindhoven, The Netherlands, August 1970.

[ea] Harald Welte et al. netfilter/iptables (ip conntrack 2.1).
http://www.netfilter.org/.

[EZ01] Pasi Eronen and Jukka Zitting. An expert system for analyzing firewall rules.
In Proceedings of the 6th Nordic Workshop on Secure IT Systems (NordSec
2001), pages 100–107, Copenhagen, Denmark, November 2001. Technical Re-
port IMM-TR-2001-14, Technical University of Denmark.

[FKSF01] M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy. A framework for
understanding vulnerabilities in firewalls using a dataflow model of firewall
internals. In Computers & Security, vol. 20, no. 3, pages 263–270, May 2001.

[Fra05] Markus Frauenfelder. Representation of a network. Semester thesis, Departe-
ment of Computer Science, ETH Zürich, 2005.

[FvBK+91] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou,
and Abderrazak Ghedamsi. Test selection based on finite state models. vol-
ume 17, pages 591–603, Piscataway, NJ, USA, 1991. IEEE Press.

[GFi06] GFi. GFi LANguard network security scanner7.
http://www.gfi.com/lannetscan/, 2006.

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data
selection. In IEEE Transactions on Software Engineering (TSE), Volume 1,
Number 2, pages 156–173, June 1975.

150

http://www.netfilter.org/
http://www.gfi.com/lannetscan/

BIBLIOGRAPHY BIBLIOGRAPHY

[Gil61] A. Gill. State-identification experiments in finite automata. In Information
and Control, vol. 4, pages 132 – 154, 1961.

[Gil62] A. Gill. Introduction to the Theory of Finite-state Machines. McGraw-Hill,
1962.

[Gro97] Network Working Group. RFC 2196: Site security handbook, September
1997.

[Gut97] J. D. Guttman. Filtering postures: Local enforcement for global policies. In
1997 IEEE Symposium on Security and Privacy, pages 120–129, Oakland,
CA, 1997. IEEE Computer Society Press.

[Haz00] Scott Hazelhurst. Algorithms for analysing firewall and router access lists.
In Proc. ICDSN. Workshop on Dependable IP Systems and Platforms, June
2000.

[Hil05] Stefan Hildenbrand. Generation of test cases from automata. Semester thesis,
Departement of Computer Science, ETH Zürich, 2005.

[How76] W.E. Howden. Reliability of the path analysis testing strategy. In IEEE
Transactions on Software Engineering, SE-2, July 1976.

[HPL98] James Hoagland, Raju Pandey, and Karl Levitt. Security policy specifica-
tion using a graphical approach. Technical report CSE-98-3, University of
California, Davis Department of Computer Science, July 1998.

[ISI81a] University of Southern California Information Sciences Institute. RFC 791:
Internet protocol, September 1981.

[ISI81b] University of Southern California Information Sciences Institute. RFC 793:
Transmission control protocol, September 1981.

[ITU03] International Telecommunication Union ITU-T. H.323: Packet-based multi-
media communications systems, July 2003.

[JW01] Jan Jürjens and Guido Wimmel. Specification-based testing of firewalls. In
Andrei Ershov, editor, 4th International Conference Perspectives of System
Informatics (PSI’01), LNCS. Springer, 2001.

[KFS+03] Seny Kamara, Sonia Fahmy, Eugene Schultz, Florian Kerschbaum, and
Michael Frantzen. Analysis of vulnerabilities in internet firewalls. In Com-
puters and Security, volume 22, pages 214–232, 2003.

[Ltd] Checkpoint Software Technologies Ltd. Checkpoint R55W.
http://www.checkpoint.com/.

151

http://www.checkpoint.com/

BIBLIOGRAPHY BIBLIOGRAPHY

[LY96] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines - a survey. In Proceedings of The IEEE, Vol. 84, No. 8, pages 1090
– 1123, August 1996.

[Ma04] Huibo Heidi Ma. Specification based firewall testing. Master’s thesis, Texas
State University-San Marcos, May 2004.

[Mea55] G.H. Mealy. Method for synthesizing sequential circuits. In Bell System
Technical Journal, volume 34, pages 1045 – 1079, 1955.

[Mic] Microsoft. ISA server v4.0.2161.50.
http://www.microsoft.com/isaserver/default.mspx.

[MWZ00] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis
engine. In Proceedings of the 2000 IEEE Symposium on Security and Privacy
(S&P 2000), pages 177–187, May 2000.

[MWZ05] A. Mayer, A. Wool, and E. Ziskind. Offline firewall analysis. In International
Journal of Information Security, pages 125–144, 2005.

[Mye04] Glenford J. Myers. The Art of Software Testing, Second Edition. John Wiley
& Sons, Inc., 2004.

[oCS03] Polytechnic University Department of Computer and Information Science.
Security policy. http://cis.poly.edu/security-policy.html, 2003.

[Org96] International Standardization Organization. ISO/IEC 7498-1: Information
technology – open systems interconnection – basic reference model: The basic
model (second edition), June 1996.

[oSN95] National Institute of Standards and Technology (NIST). An introduction to
computer security: The NIST handbook, October 1995.

[RF] Susan H. Rodger and Thomas Finley. Jflap - java formal language and au-
tomata package. http://www.jflap.org.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. RFC 3261 SIP: Session initiation
protocol. http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[SAN] SANS. The sans security policy project.
http://www.sans.org/resources/policies/.

[Sch96] E. Schultz. How to perform effective firewall testing. In Computer Security
Journal, vol. 12, no. 1, pages 47–54, 1996.

152

http://www.microsoft.com/isaserver/default.mspx
http://cis.poly.edu/security-policy.html
http://www.jflap.org
http://www.ietf.org/rfc/rfc3261.txt
http://www.sans.org/resources/policies/

BIBLIOGRAPHY BIBLIOGRAPHY

[Sch06] Adrian Schüpbach. Firewall testing with NAT. Semester thesis, Departement
of Computer Science, ETH Zürich, 2006.

[SCR+96] Y. Rekhter (Cisco Systems), B. Moskowitz (Chrysler Corp.), D. Karrenberg
(RIPE NCC), G. J. de Groot (RIPE NCC), and E. Lear (Silicon Graphics
Inc.). RFC 1918: Address allocation for private internets, February 1996.

[SD88] Krishan Sabnani and Anton Dahbura. A protocol test generation procedure.
In Computer Networks and ISDN Systems 15, pages 285–297, 1988.

[Sec06] Network Secure. Network-Standardverfahren.
http://www.network-secure.de/, 2006.

[ST99] P. Srisuresh and M. Holdrege (Lucent Technologies). RFC 2663: IP network
address translator (NAT) terminology and considerations, August 1999.

[Str06] Beat Strasser. Extending fwtest to handle udp and icmp. Semester thesis,
Departement of Computer Science, ETH Zürich, 2006.

[Tan96] Andrew Tanenbaum. Computer Networks, Third Edition. Prentice-Hall In-
ternational, 1996.

[Uni03] RMIT University. Security policy.
http://www.cs.rmit.edu.au/rules/computer-security.shtml, 2003.

[UoI03] CS Department University of Idaho. Information assurance security plan.
http://www.cs.uidaho.edu/security.html, 2003.

[Wal04] Jack Walsh. ICSA labs firewall testing: An in depth analysis, June 2004.

[Woo01] A. Wool. Architecting the lumeta firewall analyzer. In Proceedings of the 10th
USENIX Security Symposium, pages 85–97, August 2001.

[WTS03] John Wack, Miles Tracy, and Murugiah Souppaya. Guideline on network
security testing. NIST special publication 800-42, October 2003.

[Zau04] Gerry Zaugg. Firewall testing. Diploma thesis, Departement of Computer
Science, ETH Zürich, 2004.

153

http://www.network-secure.de/
http://www.cs.rmit.edu.au/rules/computer-security.shtml
http://www.cs.uidaho.edu/security.html

Index

automaton
accepting state, 9
characterisation set, 20
completely specified, 18
deterministic, 18
distinguishing sequence, 21
equivalence, 17
final state, 9
Mealy machine, 9

test generation, 17
minimal, 18
reachable state, 18
reduced, 17
reset, 18
state cover set, 20
strongly connected, 17
transition cover set, 20

connection, 11

firewall, 1, 4, 36
abstract rules, 3
application layer firewall, 13
configuration, 4, 14
filter, 37
implementation, 4, 14
iptables, 15, 147
NAT, 10, 13
packet filter, 13

stateful, 14
stateless, 14

permissive, 78
restrictive, 78
rules, 37
ruleset, 14
testing, 2

midpoint
correct tracking at time t, 83
correct message, 82
correct trace, 82
correct transition, 82
incorrect message, 82
message history, 82
midpoint equivalent trace, 83
midpoint equivalent triples, 83
midpoint message history, 82
protocol automaton, 38
successor state, 81

network, 27, 36
client, 27
DMZ, 27
layout, 5, 27, 28
packet, 10
router, 10, 27
server, 27

policy
access policy, 1
ambiguous, 40
formal policy, 3, 5, 30
informal, 3
keyword definitions, 5, 33
network policy, 5
security policy, 1, 12, 37

protocol, 9, 10
initiator, 11
IP

address, 10
IPv4, 10
IPv6, 10
private address space, 10

154

INDEX INDEX

responder, 11
specification, 46
TCP, 10

acknowledgement, 11
flags, 11
retransmission, 11
sequence number, 11

test, 16
adaptive, 21, 22, 43
black box, 16
conformance testing, 3, 17
criteria

complete, 16
full fault coverage, 18
reliable, 16
successful, 16
valid, 16

firewall testing, 2
formal testing, 63
fundamental theorem, 16
generation

DS method, 21
for Mealy machines, 17
test tree, 18
UIO sequences method, 21
UIOv method, 21
W-Method, 19
Wp-Method, 20

methodology, 35
penetration testing, 62
preset, 21, 22, 43
specification-based, 3, 16
test case, 16

abstract test case, 5, 37, 46
concrete test case, 5
test tuple, 37

test data, 16
test input, 16
test output, 16
test tuple, 5
vulnerability testing, 3
white box, 16

tool
fwtest, 47

validation, 16
verification, 16

155

Curriculum Vitae

Diana von Bidder - Senn
Forchstrasse 179, 8032 Zürich
diana.bidder@inf.ethz.ch

born 14.11.78
citizen of Zürich ZH, Obersiggenthal AG, Basel BS, Genève GE

Education
09.2003 – 04.2007 PhD in “Specification-based Firewall Testing”
10.2003 – 04.2006 Didaktikausweis (Höheres Lehramt) in Computer Science
10.1998 – 07.2003 Dipl. Informatik Ing. ETH
08.1993 – 01.1998 Matura Typus C, MNG Rämibühl, Zürich

Work Experience
09.2003 – 05.2007 research and teaching assistant, ETH Zürich
04.2002 – 09.2002 internship, open systems ag
10.2000 – 02.2003 teaching assistant (Hilfsassistent), ETH Zürich

156

	Introduction
	State of the Art
	Goal
	Possible Approaches
	Overview of our Approach
	Contributions
	Organisation of this Thesis

	Background
	Mealy Machines
	Network Protocols
	Security Policy
	Firewalls
	Testing in General
	Test Case Generation

	I Specification-based Firewall Testing
	Specification
	Network Layout
	Formal Policy
	Summary

	Test Methodology
	Test Objectives
	The System under Test
	Test Case Generation
	Practical Considerations
	Summary

	Validation
	Tools
	An Example Test Run
	Armasuisse Case Study

	Related Work
	Security Policy
	Firewalls

	Summary
	Conclusion
	Future Work

	II Endpoints versus Midpoints
	Motivation
	The Source of the Problem
	Case Study

	Construction
	Setting
	Idea
	Construction
	Correctness

	Summary
	Discussion
	Conclusion
	Future Work

	III Conclusion
	Conclusion and Future Work
	Conclusion
	Future Work

	IV Appendix
	Validation -- Test Tuples
	Haskell Code for End to Mid
	Abstract Test Cases for TCP
	A small iptables HOWTO

